On difficult problems and locally graded groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 127-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some problems that in general have a negative answer have an affirmative answer in the class of locally graded groups and a negative answer outside of this class. We present three such problems and mention other three, which possibly are of that type.
@article{FPM_2005_11_2_a8,
     author = {O. Macedo\'nska},
     title = {On difficult problems and locally graded groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/}
}
TY  - JOUR
AU  - O. Macedońska
TI  - On difficult problems and locally graded groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 127
EP  - 133
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/
LA  - ru
ID  - FPM_2005_11_2_a8
ER  - 
%0 Journal Article
%A O. Macedońska
%T On difficult problems and locally graded groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 127-133
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/
%G ru
%F FPM_2005_11_2_a8
O. Macedońska. On difficult problems and locally graded groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 127-133. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] Kourovskaya tetrad: nereshennye zadachi teorii grupp, 12-e izd., Novosibirsk, 1993

[3] Maltsev A. I., “Nilpotentnye polugruppy”, Uchenye zapiski Ivanovsk. ped. in-ta, 4, 1953, 107–111

[4] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[5] Chernikov S. N., “Beskonechnye neabelevy podgruppy s usloviem invariantnosti dlya beskonechnykh neabelevykh podgrupp”, DAN SSSR, 194 (1970), 1280–1283 | Zbl

[6] Shevrin L. N., Volkov M. V., “Polugruppovye tozhdestva”, Izv. vyssh. uchebn. zaved. Mat., 11 (1985), 3–47 | MR | Zbl

[7] Bajorska B., Macedońska O., “On positive law problems in the class of locally graded groups”, Comm. Algebra, 32:5 (2004), 1841–1846 | DOI | MR | Zbl

[8] Bergman G., “Hyperidentities of groups and semigroups”, Aequationes Math., 23 (1981), 55–65 | DOI | MR

[9] Bergman G., Questions in algebra, Preprint, Berkeley, 1986 | MR

[10] Boffa M., “Elimination of inverses in groups”, Model Theory of Groups and Automorphism Groups, London Math. Soc. Lecture Notes Series, 224, 1997, 134–143 | MR

[11] Burns R. G., Medvedev Yu., “A note on Engel groups and local nilpotence”, J. Austral. Math. Soc., 64 (1998), 92–100 | DOI | MR | Zbl

[12] Burns R. G., Medvedev Yu., “Group laws implying virtual nilpotence”, J. Austral. Math. Soc., 74 (2003), 295–312 | DOI | MR | Zbl

[13] Gromov M., “Groups of polynomial growth and expanding maps”, Publs. Math. Inst. Hautes Étud. Sci., 53 (1981), 53–73 | DOI | MR

[14] Groves J. R. J., “Varieties of soluble groups and a dichotomy of P. Hall”, Bull. Austral. Math. Soc., 5 (1971), 391–410 | DOI | MR | Zbl

[15] Kim Y., Rhemtulla A. H., “On locally graded groups”, Groups–Korea'94, Walter de Gruyter, Berlin, 1995, 189–197 | MR | Zbl

[16] Kozhevnikov P., Macedońska O., “On varieties of groups without positive laws”, Comm. Algebra, 30:9 (2002), 4331–4334 | DOI | MR | Zbl

[17] Lewin J., Lewin T., “Semigroup laws in varieties of soluble groups”, Math. Proc. Cambridge Philos. Soc., 65 (1969), 1–9 | DOI | MR | Zbl

[18] Macedońska O., “Groupland”, Groups (St. Andrews 2001 in Oxford)eds. . C. Campbell, E. Robertson, G. Smith., Cambridge University Press, Cambridge, 2003, 400–404 | MR | Zbl

[19] Milnor J., “Growth of finitely generated solvable groups”, J. Differential Geom., 2 (1968), 447–449 | MR | Zbl

[20] Neumann B. H., Taylor T., “Subsemigroups of nilpotent groups”, Proc. Roy. Soc. London Ser. A, 274 (1963), 1–4 | DOI | MR | Zbl

[21] Oates S., Powell M. B., “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR | Zbl

[22] Ol'shanskii A. Yu., Storozhev A., “A group variety defined by a semigroup law”, J. Austral. Math. Soc. Ser. A, 60 (1996), 255–259 | DOI | MR

[23] Shalev A., “Combinatorial conditions in residually finite groups, II”, J. Algebra, 157 (1993), 51–62 | DOI | MR | Zbl

[24] Traustason G., “Semigroup identities in 4-Engel groups”, J. Group Theory, 2 (1999), 39–46 | DOI | MR | Zbl

[25] Vaughan-Lee M., “On Zelmanov's solution of the restricted Burnside problem”, J. Group Theory, 1 (1998), 65–94 | DOI | MR | Zbl

[26] Wolf J. A., “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”, J. Differential Geom., 2 (1968), 421–446 | MR | Zbl