On difficult problems and locally graded groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 127-133

Voir la notice de l'article provenant de la source Math-Net.Ru

Some problems that in general have a negative answer have an affirmative answer in the class of locally graded groups and a negative answer outside of this class. We present three such problems and mention other three, which possibly are of that type.
@article{FPM_2005_11_2_a8,
     author = {O. Macedo\'nska},
     title = {On difficult problems and locally graded groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--133},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/}
}
TY  - JOUR
AU  - O. Macedońska
TI  - On difficult problems and locally graded groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 127
EP  - 133
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/
LA  - ru
ID  - FPM_2005_11_2_a8
ER  - 
%0 Journal Article
%A O. Macedońska
%T On difficult problems and locally graded groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 127-133
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/
%G ru
%F FPM_2005_11_2_a8
O. Macedońska. On difficult problems and locally graded groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 127-133. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a8/