Construction of the syzygy module in automaton monomial algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 101-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of algorithmically constructing the left syzygy module for a finite system of elements in an automaton monomial algebra. The class of automaton monomial algebras includes free associative algebras and finitely presented algebras. In such algebras the left syzygy module for a finite system of elements is finitely generated. In general, the left syzygy module in an automaton monomial algebra is not finitely generated. Nevertheless, the generators of the left syzygy module have a recursive specification with the help of regular sets. This allows one to solve many algorithmic problems in automaton monomial algebras. For example, one can solve linear equations, recognize the membership in a left ideal, and recognize zero-divisors.
@article{FPM_2005_11_2_a6,
     author = {S. A. Ilyasov},
     title = {Construction of the syzygy module in automaton monomial algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a6/}
}
TY  - JOUR
AU  - S. A. Ilyasov
TI  - Construction of the syzygy module in automaton monomial algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 101
EP  - 113
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a6/
LA  - ru
ID  - FPM_2005_11_2_a6
ER  - 
%0 Journal Article
%A S. A. Ilyasov
%T Construction of the syzygy module in automaton monomial algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 101-113
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a6/
%G ru
%F FPM_2005_11_2_a6
S. A. Ilyasov. Construction of the syzygy module in automaton monomial algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 101-113. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a6/

[1] Belov A. Ya., Lineinye rekurrentnye uravneniya, International University of Bremen, Moscow Institute of Open Education, 2003

[2] Belov A. Ya., Borisenko V. V., Latyshev V. N., “Monomialnye algebry”, Itogi nauki i tekhn. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 26, VINITI, M., 2002, 35–214

[3] Piontkovskii D. I., “Nekommutativnye bazisy Grebnera, kogerentnost assotsiativnykh algebr i delimost v polugruppakh”, Fundam. i prikl. mat., 7:2 (2001), 495–513 | MR | Zbl

[4] Salomaa A., Zhemchuzhiny teorii formalnykh yazykov, Mir, M., 1986 | MR

[5] Becker T., Weispfenning V., Gröbner Bases, Springer, 1993 | MR