On some extensions of $p$-restricted completely splittable $\mathrm{GL}(n)$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 219-226
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we calculate the space $\mathrm{Ext}_{\mathrm{GL}(n)}(L_n(\lambda),L_n(\mu))$, where $\mathrm{GL}(n)$ is the general linear group of degree $n$ over an algebraically closed field of positive characteristic, $L_n(\lambda)$ and $L_n(\mu)$ are rational irreducible $\mathrm{GL}(n)$-modules with highest weights $\lambda$ and $\mu$, respectively, the restriction of $L_n(\lambda)$ to any Levi subgroup of $\mathrm{GL}(n)$ is semisimple, $\lambda$ is a $p$-restricted weight, and $\mu$ does not strictly dominate $\lambda$.
@article{FPM_2005_11_2_a14,
author = {V. V. Shchigolev},
title = {On some extensions of $p$-restricted completely splittable $\mathrm{GL}(n)$-modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {219--226},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a14/}
}
TY - JOUR
AU - V. V. Shchigolev
TI - On some extensions of $p$-restricted completely splittable $\mathrm{GL}(n)$-modules
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2005
SP - 219
EP - 226
VL - 11
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a14/
LA - ru
ID - FPM_2005_11_2_a14
ER -
V. V. Shchigolev. On some extensions of $p$-restricted completely splittable $\mathrm{GL}(n)$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 219-226. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a14/