On strongly real elements of finite groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 209-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $x\in G$. If $x$ is inverted by an involution $i$ of $G$, i.e., $x^i=x^{-1}$, then the element $x$ is called strongly real. A group consisting of only strongly real elements is called strongly real. In this paper, we study the disposition of strongly real elements in a finite group and the existence of elements that are not strongly real in connection with problems 14.69 and 14.82 from “The Kourovka Notebook.” For the proofs of the theorems, algorithms are created and implemented in the computer algebra system \textsf{GAP4r3}. They can also be applied for some other finite groups.
@article{FPM_2005_11_2_a13,
     author = {A. V. Timofeenko},
     title = {On strongly real elements of finite groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a13/}
}
TY  - JOUR
AU  - A. V. Timofeenko
TI  - On strongly real elements of finite groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 209
EP  - 218
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a13/
LA  - ru
ID  - FPM_2005_11_2_a13
ER  - 
%0 Journal Article
%A A. V. Timofeenko
%T On strongly real elements of finite groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 209-218
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a13/
%G ru
%F FPM_2005_11_2_a13
A. V. Timofeenko. On strongly real elements of finite groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a13/

[1] Mazurov V. D., “O porozhdenii sporadicheskikh prostykh grupp tremya involyutsiyami, dve iz kotorykh perestanovochny”, Sib. mat. zhurn., 44:1 (2003), 193–198 | MR | Zbl

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Novosibirskii gos. un-t, Novosibirsk, 2002 | MR

[3] Ryabinina N. A., Suchkov N. M., Shunkov V. P., Ob osobykh podgruppakh konechnykh grupp s involyutsiyami, Preprint VTs SO RAN, No 10, Krasnoyarsk, 1995, 3–11

[4] Shmidt V. A., “O porozhdayuschikh mnozhestvakh involyutsii znakoperemennykh i sporadicheskikh grupp”, Materialy XXXIV nauchnoi studencheskoi konferentsii, sbornik statei, Izd-vo Krasnoyarskogo gos. un-ta, Krasnoyarsk, 2001, 139–144

[5] Shunkov V. P., $M_p$-gruppy, Nauka, M., 1990 | MR | Zbl

[6] Kolesnikov S. G., Nuzhin Ja. N., “On strong reality of finite simple groups”, Acta Appl. Math., 85 (2005), 195–203 | DOI | MR | Zbl

[7] Wilson R., ATLAS of Group Representations, http://web.mat.bham.ac.uk/atlas/v2.0