Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_2_a11, author = {D. A. Stepanov}, title = {On nonrational divisors over {non-Gorenstein} terminal singularities}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {169--184}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/} }
D. A. Stepanov. On nonrational divisors over non-Gorenstein terminal singularities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 169-184. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/
[1] Stepanov D. A., “O razresheniyakh terminalnykh osobennostei”, Mat. zametki (to appear)
[2] Dolgachev I., “Weighted projective spaces”, Group Actions and Vector Fields, Lecture Notes in Math., 956, Springer, 1982, 34–71 | MR
[3] Hayakawa T., “Blowing ups of 3-dimensional terminal singularities”, Publ. RIMS, 35, Kyoto Univ., 1999, 515–570 | MR | Zbl
[4] Kawamata Y., “The minimal discrepancy of a 3-fold singularity”, appendix to Shokurov, V. V., 3-fold log flips, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR
[5] Kollár J., Shepard-Barron N., “Threefolds and deformations of surface singularities”, Invent. Math., 91 (1988), 299–338 | DOI | MR | Zbl
[6] Markushevich D., “Minimal discrepancy for a terminal cDV singularity is $1$”, J. Math. Sci. Univ. Tokyo, 3 (1996), 445–456 | MR | Zbl
[7] Mori S., “On 3-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl
[8] Prokhorov Yu. G., “$\mathbb{E}1$-blowing ups of terminal singularities”, J. Math. Sci., 115:3 (2003), 2395–2427 | DOI | MR | Zbl
[9] Reid M., “Canonical 3-folds”, Journées Géométrie Algébrique d'Angersed. . A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273–310 | MR
[10] Stepanov D. A., Non-rational divisors over non-degenerate cDV-points, arXiv:math.AG/0407350
[11] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl