On nonrational divisors over non-Gorenstein terminal singularities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 169-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,o)$ be a germ of a $3$-dimensional terminal singularity of index $m\geq2$. If $(X,o)$ has type $cAx/4$, $cD/3\text{-}3$, $cD/2\text{-}2$, or $cE/2$, then we assume that the standard equation of $X$ in $\mathbb{C}^4/\mathbb{Z}_m$ is nondegenerate with respect to its Newton diagram. Let $\pi\colon Y\to X$ be a resolution. We show that there are at most 2 nonrational divisors $E_i$, $i=1,2$, on $Y$ such that $\pi(E_i)=o$ and the discrepancy $a(E_i,X)$ is at most 1. When such divisors exist, we describe them as exceptional divisors of certain blowups of $(X,o)$ and study their birational type.
@article{FPM_2005_11_2_a11,
     author = {D. A. Stepanov},
     title = {On nonrational divisors over {non-Gorenstein} terminal singularities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--184},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - On nonrational divisors over non-Gorenstein terminal singularities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 169
EP  - 184
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/
LA  - ru
ID  - FPM_2005_11_2_a11
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T On nonrational divisors over non-Gorenstein terminal singularities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 169-184
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/
%G ru
%F FPM_2005_11_2_a11
D. A. Stepanov. On nonrational divisors over non-Gorenstein terminal singularities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 169-184. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a11/

[1] Stepanov D. A., “O razresheniyakh terminalnykh osobennostei”, Mat. zametki (to appear)

[2] Dolgachev I., “Weighted projective spaces”, Group Actions and Vector Fields, Lecture Notes in Math., 956, Springer, 1982, 34–71 | MR

[3] Hayakawa T., “Blowing ups of 3-dimensional terminal singularities”, Publ. RIMS, 35, Kyoto Univ., 1999, 515–570 | MR | Zbl

[4] Kawamata Y., “The minimal discrepancy of a 3-fold singularity”, appendix to Shokurov, V. V., 3-fold log flips, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR

[5] Kollár J., Shepard-Barron N., “Threefolds and deformations of surface singularities”, Invent. Math., 91 (1988), 299–338 | DOI | MR | Zbl

[6] Markushevich D., “Minimal discrepancy for a terminal cDV singularity is $1$”, J. Math. Sci. Univ. Tokyo, 3 (1996), 445–456 | MR | Zbl

[7] Mori S., “On 3-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[8] Prokhorov Yu. G., “$\mathbb{E}1$-blowing ups of terminal singularities”, J. Math. Sci., 115:3 (2003), 2395–2427 | DOI | MR | Zbl

[9] Reid M., “Canonical 3-folds”, Journées Géométrie Algébrique d'Angersed. . A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273–310 | MR

[10] Stepanov D. A., Non-rational divisors over non-degenerate cDV-points, arXiv:math.AG/0407350

[11] Varchenko A. N., “Zeta-function of monodromy and Newton's diagram”, Invent. Math., 37 (1976), 253–262 | DOI | MR | Zbl