Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_2_a10, author = {A. N. Panov}, title = {Representations of quantum orders}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {157--167}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a10/} }
A. N. Panov. Representations of quantum orders. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 157-167. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a10/
[1] Karasëv M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[2] Panov A. N., “Neprivodimye predstavleniya kvantovykh razreshimykh algebr v kornyakh iz 1”, Algebra i analiz, 15:4 (2003), 204–235 | MR | Zbl
[3] Brown K. A., Gordon I., “Poisson orders, symplection reflection algebras and representation theory”, J. Reine Angew. Math., 559 (2003), 193–216 | DOI | MR | Zbl
[4] Cauchon G., “Effacement des dérivations et spèctres premiers des algèbres quantiques”, J. Algebra, 260:2 (2003), 476–518 | DOI | MR | Zbl
[5] De Concini C., Kac V. G., “Representations of quantum groups at roots of $1$”, Operator algebras, unitary representations, enveloping algebras, and invariant theory,, Proc. Colloq. in Honour of J. Dixmier (Paris 1989), Progress in Math., 92, Birkhäuser, 1990, 471–506 | MR
[6] De Concini C., Kac V. G., Procesi C., “Quantum coadjoint action”, J. Amer. Math. Soc., 5 (1992), 151–189 | DOI | MR | Zbl
[7] De Concini C., Lyubashenko V., “Quantum function algebra at roots of $1$”, Adv. Math., 108 (1994), 205–262 | DOI | MR | Zbl
[8] De Concini C., Procesi C., “Quantum Groups”, D-modules, representation theory, and quantum groups, Lectures given at the 2nd session of the Centr Internazionale Matematico Estivo (C.I.M.E.) (Venezia, Italy, June 12–20, 1992), Lect. Notes Math., 1565, eds. G. Zampieri et al., Springer, Berlin, 1993, 31–140 | MR | Zbl
[9] De Concini C., Procesi C., “Quantum Schubert cells and representations at roots of $1$”, Algebraic Groups and Lie Groups, Australian Math. Soc. Lecture Series, 9, ed. G. I. Lehrer, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[10] Goodearl K. R., “Prime Spectra of Quantized Coordinate Rings”, Interactions between ring theory and representations of algebras, Proceedings of the conference (Murcia, Spain), Lect. Notes Pure Appl. Math., 210, eds. F. Van Oystaeyen et al., Marcel Dekker, New York, 2000, 205–237 | MR | Zbl
[11] Horton K. L., “The prime and primitive spectra of multilinear quantum symplectic and Euclidean spaces”, Comm. Algebra, 31:10 (2003), 4713–4743 | DOI | MR | Zbl
[12] Jakobsen H., Zhang H., “Quantized Heisenberg spaces”, Algebras Represent. Theory, 2:2 (2000), 151–174 | DOI | MR | Zbl
[13] Joseph A., Quantum Groups and Their Primitive Ideals, Springer, Berlin, 1995 | MR
[14] McConnel J. C., Robson J. C., Noncommutative Noetherian Rings, Wileys–Interscience, New York, 1987 | MR | Zbl
[15] Panov A. N., “Fields of fractions of quantum solvable algebras”, J. Algebra, 236 (2001), 110–121 | DOI | MR | Zbl
[16] Panov A. N., “Quantum solvable algebras. Ideals and representations at roots of $1$”, Transform. Groups, 7:4 (2002), 379–402 | DOI | MR | Zbl
[17] Oh Sei-Qwon, “Primitive ideals of the coordinate ring of quantum symplectic space”, J. Algebra, 174 (1995), 531–552 | DOI | MR | Zbl
[18] Zhang H., “The irreducible representations of the coordinate ring of the quantum matrix space”, Algebra Colloq., 9:4 (2002), 383–392 | MR | Zbl