On the solution of Toda systems associated with simple Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 181-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the Hamiltonian reduction of the Wess–Zumino model to the Toda system associated with a semisimple Lie algebra and propose a method for the construction of the exact solution of the Toda system based on this reduction.
@article{FPM_2005_11_1_a6,
     author = {A. V. Ovchinnikov},
     title = {On the solution of {Toda} systems associated with simple {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--193},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/}
}
TY  - JOUR
AU  - A. V. Ovchinnikov
TI  - On the solution of Toda systems associated with simple Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 181
EP  - 193
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/
LA  - ru
ID  - FPM_2005_11_1_a6
ER  - 
%0 Journal Article
%A A. V. Ovchinnikov
%T On the solution of Toda systems associated with simple Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 181-193
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/
%G ru
%F FPM_2005_11_1_a6
A. V. Ovchinnikov. On the solution of Toda systems associated with simple Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 181-193. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/

[1] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Noveishie dostizheniya, 24, VINITI, M., 1984, 81–180 | MR

[2] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[3] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[4] Balog J., Fehér L., O'Raifeartaigh L., Forgács P., Wipf A., “Toda theory and $W$-algebra from a gauged WZNW point of view”, Ann. Physics, 203 (1990), 76–136 | DOI | MR | Zbl

[5] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[6] Dotsenko V. S., “Lectures on conformal field theory”, Adv. Stud. Pure Math., 16 (1988), 123–170 | MR | Zbl

[7] Fehér L., O'Raifeartaigh L., Ruelle P., Tsutsui I., Wipf A., “On Hamiltonian reductions of the Wess–Zumino–Novikov–Witten theories”, Phys. Rep., 222:1 (1992), 1–64 | DOI | MR

[8] Mikhailov A. V., Olshanetsky M. A., Perelomov A. M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR