Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_1_a6, author = {A. V. Ovchinnikov}, title = {On the solution of {Toda} systems associated with simple {Lie} algebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {181--193}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/} }
A. V. Ovchinnikov. On the solution of Toda systems associated with simple Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 181-193. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a6/
[1] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Noveishie dostizheniya, 24, VINITI, M., 1984, 81–180 | MR
[2] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl
[3] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[4] Balog J., Fehér L., O'Raifeartaigh L., Forgács P., Wipf A., “Toda theory and $W$-algebra from a gauged WZNW point of view”, Ann. Physics, 203 (1990), 76–136 | DOI | MR | Zbl
[5] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[6] Dotsenko V. S., “Lectures on conformal field theory”, Adv. Stud. Pure Math., 16 (1988), 123–170 | MR | Zbl
[7] Fehér L., O'Raifeartaigh L., Ruelle P., Tsutsui I., Wipf A., “On Hamiltonian reductions of the Wess–Zumino–Novikov–Witten theories”, Phys. Rep., 222:1 (1992), 1–64 | DOI | MR
[8] Mikhailov A. V., Olshanetsky M. A., Perelomov A. M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR