Associative homotopy Lie algebras and Wronskians
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 159-180

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze representations of Schlessinger–Stasheff associative homotopy Lie algebras by higher-order differential operators. $W$-transformations of chiral embeddings of a complex curve related with the Toda equations into Kähler manifolds are shown to be endowed with the homotopy Lie-algebra structures. Extensions of the Wronskian determinants preserving Schlessinger–Stasheff algebras are constructed for the case of $n\geq1$ independent variables.
@article{FPM_2005_11_1_a5,
     author = {A. V. Kiselev},
     title = {Associative homotopy {Lie} algebras and {Wronskians}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--180},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/}
}
TY  - JOUR
AU  - A. V. Kiselev
TI  - Associative homotopy Lie algebras and Wronskians
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 159
EP  - 180
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/
LA  - ru
ID  - FPM_2005_11_1_a5
ER  - 
%0 Journal Article
%A A. V. Kiselev
%T Associative homotopy Lie algebras and Wronskians
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 159-180
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/
%G ru
%F FPM_2005_11_1_a5
A. V. Kiselev. Associative homotopy Lie algebras and Wronskians. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 159-180. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/