Associative homotopy Lie algebras and Wronskians
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze representations of Schlessinger–Stasheff associative homotopy Lie algebras by higher-order differential operators. $W$-transformations of chiral embeddings of a complex curve related with the Toda equations into Kähler manifolds are shown to be endowed with the homotopy Lie-algebra structures. Extensions of the Wronskian determinants preserving Schlessinger–Stasheff algebras are constructed for the case of $n\geq1$ independent variables.
@article{FPM_2005_11_1_a5,
author = {A. V. Kiselev},
title = {Associative homotopy {Lie} algebras and {Wronskians}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--180},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/}
}
A. V. Kiselev. Associative homotopy Lie algebras and Wronskians. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 159-180. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a5/