K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 141-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nondegenerate $m$-pair $(A,\Xi)$ in an $n$-dimensional projective space $\mathbb RP_n$ consists of an $m$-plane $A$ and an $(n-m-1)$-plane $\Xi$ in $\mathbb RP_n$, which do not intersect. The set $\mathfrak N_m^n$ of all nondegenerate $m$-pairs $\mathbb RP_n$ is a $2(n-m)(n-m-1)$-dimensional, real-complex manifold. The manifold $\mathfrak N_m^n$ is the homogeneous space $\mathfrak N_m^n=\matrm{GL}(n+1,\mathbb R)/\matrm{GL}(m+1,\mathbb R)\times\matrm{GL}(n-m,\mathbb R)$ equipped with an internal Kähler structure of hyperbolic type. Therefore, the manifold $\mathfrak N_m^n$ is a hyperbolic analogue of the complex Grassmanian $\mathbb CG_{m,n}=\mathrm U(n+1)/\mathrm U(m+1)\times\mathrm U(n-m)$. In particular, the manifold of 0-pairs $\mathfrak N_0^n=\matrm{GL}(n+1,\mathbb R)/\matrm{GL}(1,\mathbb R)\times\matrm{GL}(n,\mathbb R)$ is a hyperbolic analogue of the complex projective space $\mathbb CP_n=\mathrm U(n+1)/\mathrm U(1)\times\mathrm U(n)$. Similarly to $\mathbb CP_n$, the manifold $\mathfrak N_0^n$ is a Kähler manifold of constant nonzero holomorphic sectional curvature (relative to a hyperbolic metrics). In this sense, $\mathfrak N_0^n$ is a hyperbolic spatial form. It was proved that the manifold of 0-pairs $\mathfrak N_0^n$ is globally symplectomorphic to the total space $T^*\mathbb RP_n$ of the cotangent bundle over the projective space $\mathbb RP_n$. A generalization of this result is as follows: the manifold of nondegenerate $m$-pairs $\mathfrak N_m^n$ is globally symplectomorphic to the total space $T^*\mathbb RG_{m,n}$ of the cotangent bundle over the Grassman manifold $\mathbb RG_{m,n}$ of $m$-dimensional subspaces of the space $\mathbb RP_n$. In this paper, we study the canonical Kähler structure on $\mathfrak N_m^n$. We describe two types of submanifolds in $\mathfrak N_m^n$, which are natural hyperbolic spatial forms holomorphically isometric to manifolds of 0-pairs in $\mathbb RP_{m+1}$ and in $\mathbb RP_{n-m}$, respectively. We prove that for any point of the manifold $\mathfrak N_m^n$, there exist a $2(n-m)$-parameter family of $2(m+1)$-dimensional hyperbolic spatial forms of first type and a $2(m+1)$-parameter family of $2(n-m)$-dimensional hyperbolic spatial forms of second type passing through this point. We also prove that natural hyperbolic spatial forms of first type on $\mathfrak N_m^n$ are in bijective correspondence with points of the manifold $\mathfrak N_{m+1}^n$ and natural hyperbolic spatial forms of second type on $\mathfrak N_m^n$ are in bijective correspondence with points of the manifolds $\mathfrak N_{m-1}^n$.
@article{FPM_2005_11_1_a4,
     author = {V. V. Konnov},
     title = {K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a4/}
}
TY  - JOUR
AU  - V. V. Konnov
TI  - K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 141
EP  - 158
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a4/
LA  - ru
ID  - FPM_2005_11_1_a4
ER  - 
%0 Journal Article
%A V. V. Konnov
%T K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 141-158
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a4/
%G ru
%F FPM_2005_11_1_a4
V. V. Konnov. K\"ahler geometry of hyperbolic type on the manifold of nondegenerate $m$-pairs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a4/

[1] Akivis M. A., “K differentsialnoi geometrii grassmanova mnogoobraziya”, Tensor, 38 (1982), 179–187 | MR

[2] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Problemy geometrii, T. 9, VINITI, M., 1979

[3] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[4] Konnov V. V., “Kokasatelnoe rassloenie proektivnogo prostranstva i mnogoobrazie nevyrozhdennykh nul-par”, Mat. zametki, 70:5 (2001), 718–735 | MR | Zbl

[5] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966 | MR

[6] Griffiths P., Harris J., “Algebraic geometry and local differential geometry”, Ann. Sci. Ecole Norm. Sup. 4 serie, 12 (1979), 355–452 | MR | Zbl

[7] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry. II”, Geom. Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[8] Konnov V. V., “Symplectic geometry on the manifold of nondegenerate $m$-pairs”, J. Math. Sci., 113:3 (2003), 489–513 | DOI | MR | Zbl