On the possibility of exact reciprocal transformations for one-soliton solutions to equations of the Lobachevsky class
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 241-246
Problems on reciprocal transformation of solutions to equations of $\Lambda^2$-class (equations related with special coordinate nets on the Lobachevsky plane $\Lambda^2$) are discussed. A method of the construction of solutions to one analytic differential equation of $\Lambda^2$-class by a given solution of another analytic differential equation of this class is proposed. The reciprocal transformation of one-soliton solutions of the sine-Gordon equation and one-soliton solutions of the modified Korteweg–de Vries equation is obtained. This result confirms the possibility of the construction of such transition.
@article{FPM_2005_11_1_a11,
author = {M. S. Ratinsky},
title = {On the possibility of exact reciprocal transformations for one-soliton solutions to equations of the {Lobachevsky} class},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {241--246},
year = {2005},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a11/}
}
TY - JOUR AU - M. S. Ratinsky TI - On the possibility of exact reciprocal transformations for one-soliton solutions to equations of the Lobachevsky class JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 241 EP - 246 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a11/ LA - ru ID - FPM_2005_11_1_a11 ER -
%0 Journal Article %A M. S. Ratinsky %T On the possibility of exact reciprocal transformations for one-soliton solutions to equations of the Lobachevsky class %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 241-246 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a11/ %G ru %F FPM_2005_11_1_a11
M. S. Ratinsky. On the possibility of exact reciprocal transformations for one-soliton solutions to equations of the Lobachevsky class. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 241-246. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a11/
[1] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1974 | MR
[2] Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo i uravneniya matematicheskoi fiziki”, Dokl. RAN, 332:4 (1993), 418–421 | MR | Zbl
[3] Poznyak E. G., Popov A. G., “Geometriya uravneniya $\sin$-Gordona”, Itogi nauki i tekhn. Ser. Probl. geometrii, 23, VINITI, M., 1991, 99–130 | MR
[4] Popov A. G., DAN, 312:5 (1990), 1109–1111 | MR