On noncommutative Gr\"obner bases over rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 91-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring. It is proved that for verification whether a set of elements $\{f_\alpha\}$ of the free associative algebra over $R$ is a Gröbner basis (with respect to some admissible monomial order) of the (bilateral) ideal that the elements $f_\alpha $ generate it is sufficient to check reducibility to zero of $S$-polynomials with respect to $\{f_\alpha\}$ iff $R$ is an arithmetical ring. Some related open questions and examples are also discussed.
@article{FPM_2004_10_4_a6,
author = {E. S. Golod},
title = {On noncommutative {Gr\"obner} bases over rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {91--96},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a6/}
}
E. S. Golod. On noncommutative Gr\"obner bases over rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 91-96. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a6/