On the problem of classification of finite groups associated to multiplicative $\eta$-products
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 43-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study finite groups such that the cusp forms associated to all elements of these groups by means of some faithful representation are modular forms with multiplicative Fourier coefficients from a special class. The Sylow subgroups of such groups of odd order are found. We consider such metacyclic groups. The groups of order 16 and the groups of order 32 that are metacyclic or are direct products of a group of order 16 and the cyclic group of order 2 are considered in detail.
@article{FPM_2004_10_4_a4,
     author = {G. V. Voskresenskaya},
     title = {On the problem of classification of finite groups associated to multiplicative $\eta$-products},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {43--64},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a4/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - On the problem of classification of finite groups associated to multiplicative $\eta$-products
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 43
EP  - 64
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a4/
LA  - ru
ID  - FPM_2004_10_4_a4
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T On the problem of classification of finite groups associated to multiplicative $\eta$-products
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 43-64
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a4/
%G ru
%F FPM_2004_10_4_a4
G. V. Voskresenskaya. On the problem of classification of finite groups associated to multiplicative $\eta$-products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 43-64. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a4/

[1] Voskresenskaya G. V., “Parabolicheskie formy i konechnye podgruppy v $\operatorname{SL}(5,\mathbf C)$”, Funktsion. analiz i ego pril., 29:2 (1995), 1–73 | MR

[2] Voskresenskaya G. V., “Modulyarnye formy i regulyarnye predstavleniya grupp poryadka 24”, Mat. zametki, 60:2 (1996), 292–294 | MR | Zbl

[3] Voskresenskaya G. V., “Modulyarnye formy i predstavleniya grupp diedra”, Mat. zametki, 63:1 (1998), 130–133 | MR | Zbl

[4] Voskresenskaya G. V., “Metatsiklicheskie gruppy i modulyarnye formy”, Mat. zametki, 67:2 (2000), 163–173 | MR | Zbl

[5] Voskresenskaya G. V., “Abelevy gruppy i modulyarnye formy”, Vestnik SamGU, 28:2 (2003), 21–35 | MR | Zbl

[6] Voskresenskaya G. V., “Multiplikativnye proizvedeniya $\eta$-funktsii Dedekinda i predstavleniya grupp”, Mat. zametki, 73:4 (2003), 511–521 | MR | Zbl

[7] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962

[8] Dummit D., Kisilevsky H., McKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45 (1985), 89–98 | MR | Zbl

[9] Gordon B., Sinor S., Multiplicative properties of $\eta$-products, Lecture Notes in Math., 1395, Springer, 1989 | MR

[10] Koike M., “On McKay's conjecture”, Nagoya Math. J., 95 (1984), 85–89 | MR | Zbl

[11] Kondo T., “Examples of multiplicative $\eta$-products”, Sci. Papers College Arts Sci. Univ. Tokyo, 35 (1986), 133–149 | MR | Zbl

[12] Martin Y., Ken O., “Eta-quotients and elliptic curves”, Proc. Amer. Math. Soc., 125:11 (1997), 3169–3176 | DOI | MR | Zbl

[13] Mason G., “$M_{24}$ and certain automorphic forms”, Contemp. Math., 45 (1985), 223–244 | MR | Zbl

[14] Mason G., “Finite groups and Hecke operators”, Math. Ann., 282 (1989), 381–409 | DOI | MR

[15] Ono K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, 2004 | MR

[16] Voskresenskaya G. V., “One special class of modular forms and group representations”, J. Théor. Nombres Bordeaux, 11 (1999), 247–262 | MR | Zbl