The Riemann--Roch theorem on surfaces with log terminal singularities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 35-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the singular Riemann–Roch theorem, we propose a method to construct anticanonical sections on singular del Pezzo surfaces.
@article{FPM_2004_10_4_a3,
     author = {A. B. Verevkin and Yu. G. Prokhorov},
     title = {The {Riemann--Roch} theorem on surfaces with log terminal singularities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a3/}
}
TY  - JOUR
AU  - A. B. Verevkin
AU  - Yu. G. Prokhorov
TI  - The Riemann--Roch theorem on surfaces with log terminal singularities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 35
EP  - 42
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a3/
LA  - ru
ID  - FPM_2004_10_4_a3
ER  - 
%0 Journal Article
%A A. B. Verevkin
%A Yu. G. Prokhorov
%T The Riemann--Roch theorem on surfaces with log terminal singularities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 35-42
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a3/
%G ru
%F FPM_2004_10_4_a3
A. B. Verevkin; Yu. G. Prokhorov. The Riemann--Roch theorem on surfaces with log terminal singularities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a3/