Problems in algebra inspired by universal algebraic geometry
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 181-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be a variety of algebras. In every variety $\Theta$ and every algebra $H$ from $\Theta$ one can consider algebraic geometry in $\Theta$ over $H$. We also consider a special categorical invariant $K_\Theta(H)$ of this geometry. The classical algebraic geometry deals with the variety $\Theta=\mathrm{Com-}P$ of all associative and commutative algebras over the ground field of constants $P$. An algebra $H$ in this setting is an extension of the ground field $P$. Geometry in groups is related to the varieties $\mathrm{Grp}$ and $\mathrm{Grp-}G$, where $G$ is a group of constants. The case $\mathrm{Grp-}F$, where $F$ is a free group, is related to Tarski's problems devoted to logic of a free group. The described general insight on algebraic geometry in different varieties of algebras inspires some new problems in algebra and algebraic geometry. The problems of such kind determine, to a great extent, the content of universal algebraic geometry. For example, a general and natural problem is: When do algebras $H_1$ and $H_2$ have the same geometry? Or more specifically, what are the conditions on algebras from a given variety $\Theta$ that provide the coincidence of their algebraic geometries? We consider two variants of coincidence: 1) $K_\Theta(H_1)$ and $K_\Theta(H_2)$ are isomorphic; 2) these categories are equivalent. This problem is closely connected with the following general algebraic problem. Let $\Theta^0$ be the category of all algebras $W=W(X)$ free in $\Theta$, where $X$ is finite. Consider the groups of automorphisms $\operatorname{Aut}(\Theta^0)$ for different varieties $\Theta$ and also the groups of autoequivalences of $\Theta^0$. The problem is to describe these groups for different $\Theta$.
@article{FPM_2004_10_3_a8,
     author = {B. I. Plotkin},
     title = {Problems in algebra inspired by universal algebraic geometry},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--197},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a8/}
}
TY  - JOUR
AU  - B. I. Plotkin
TI  - Problems in algebra inspired by universal algebraic geometry
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 181
EP  - 197
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a8/
LA  - ru
ID  - FPM_2004_10_3_a8
ER  - 
%0 Journal Article
%A B. I. Plotkin
%T Problems in algebra inspired by universal algebraic geometry
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 181-197
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a8/
%G ru
%F FPM_2004_10_3_a8
B. I. Plotkin. Problems in algebra inspired by universal algebraic geometry. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 181-197. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a8/

[1] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[2] Plotkin B. I., Vovsi S. M., Mnogoobraziya predstavlenii grupp: Obschaya teoriya, svyazi i prilozheniya, Zinatne, Riga, 1983 | MR | Zbl

[3] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[4] Baumslag G., Myasnikov A., Roman'kov V., “Two theorems about equationally Noetherian groups”, J. Algebra, 194 (1997), 654–664 | DOI | MR | Zbl

[5] Berzins A., “Geometrical equivalence of algebras”, Internat. J. Algebra Comput., 11:4 (2001), 447–456 | DOI | MR | Zbl

[6] Berzins A., Plotkin B., Plotkin E., “Algebraic geometry in varieties of algebras with the given algebra of constants”, J. Math. Sci., 102:3 (2000), 4039–4070 | DOI | MR | Zbl

[7] Dyer J., Formanek E., “The automorphism group of a free group is complete”, J. London Math. Soc. (2), 11:2 (1975), 181–190 | DOI | MR | Zbl

[8] Formanek E., “A question of B. Plotkin about semigroup of endomorphisms of a free group”, Proc. Amer. Math. Soc., 130 (2002), 935–937 | DOI | MR | Zbl

[9] Gobel R., Shelah S., “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130 (2002), 673–674 | DOI | MR

[10] Guba V., “Equivalence of infinite systems of equations in free groups and semigroups to finite systems”, Mat. Zametki, 40:3 (1986), 321–324 | MR | Zbl

[11] Katsov E., Lipyansky R., Plotkin B., “Automorphisms of categories of free modules, free semimodules, and free Lie modules” (to appear)

[12] Lichtman A., Passman D., “Finitely generated simple algebras: A question of B. I. Plotkin”, Israel J. Math., 143 (2004), 341–359 | DOI | MR | Zbl

[13] Lyndon R. C., Shupp P. E., Combinatorial Group Theory, Springer, 1977 | MR | Zbl

[14] Mashevitzky G., “The group of automorphisms of the category of free associative algebras” (to appear)

[15] Mashevitzky G., Plotkin B., Plotkin E., “Automorphisms of categories of free algebras of varieties”, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 1–10 | DOI | MR

[16] Mashevitzky G., Plotkin B., Plotkin E., “Automorphisms of categories of free Lie algebras”, J. Algebra, 282:2 (2004), 490–512 | DOI | MR | Zbl

[17] Mashevitzky G., Plotkin B., Plotkin E., Associative Algebras with the Same Algebraic Geometry, Preprint | MR

[18] Mashevitzky G., Shein B., “Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup”, Proc. Amer. Math. Soc., 131 (2003), 1655–1660 | DOI | MR | Zbl

[19] McKenzie R., “An algebraic version of categorical equivalence for varieties and more general algebraic categories”, Logic and Algebra (Pontignano, 1994), Lectures Notes in Pure and Appl. Math., 180, Marcel Dekker, New York, 1996, 211–243 | MR | Zbl

[20] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups, I”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[21] Plotkin B. I., “Varieties of group representations”, Usp. Mat. Nauk, 32:5 (1977), 3–68 | MR | Zbl

[22] Plotkin B., “Some notions of algebraic geometry in universal algebra”, Algebra and Analysis, 9:4 (1997), 224–248 | MR | Zbl

[23] Plotkin B., Seven Lectures on the Universal Algebraic Geometry, , 2002 arXiv: /math.GM/0204245 | MR

[24] Plotkin B., “Algebras with the same (algebraic) geometry”, Tr. MIRAN im. V. A. Steklova, 242, 2003, 176–207 | MR | Zbl

[25] Plotkin B., “Action-type axiomatized classes of group representations” (to appear)

[26] Plotkin B., Tsurkov A., “Action-type algebraic geometry in group representations” (to appear)

[27] Vovsi S. M., Triangular Products of Group Representations and Their Applications, Progress in Mathematics, 17, Birkhäuser, 1981 | MR | Zbl

[28] Vovsi S. M., Topics in Varieties of Group Representations, London Math. Soc. Lecture Notes, 163, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl