Sets of Hilbert series and their applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 143-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider graded finitely presented algebras and modules over a field. Under some restrictions, the set of Hilbert series of such algebras (or modules) becomes finite. Claims of that type imply the rationality of Hilbert and Poincaré series of some algebras and modules, including the periodicity of Hilbert functions of many (e.g., Noetherian) modules and algebras of linear growth.
@article{FPM_2004_10_3_a6,
     author = {D. I. Piontkovskii},
     title = {Sets of {Hilbert} series and their applications},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a6/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - Sets of Hilbert series and their applications
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 143
EP  - 156
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a6/
LA  - ru
ID  - FPM_2004_10_3_a6
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T Sets of Hilbert series and their applications
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 143-156
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a6/
%G ru
%F FPM_2004_10_3_a6
D. I. Piontkovskii. Sets of Hilbert series and their applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 143-156. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a6/

[1] Piontkovskii D. I., “Kozyulevy algebry i ikh idealy”, Funktsion. analiz i ego pril., 39:2 (2005), 47–60 ; Noncommutative Koszul filtrations, arXiv: math.RA/0301233 | MR | Zbl

[2] Anick D., “Generic algebras and CW-complexes”, Proc. of 1983 Conf. on Algebra, Topology and K-Theory in Honor of John Moore, Princeton Univ., 1988, 247–331 | MR

[3] Artin M., Small L. W., Zhang J. J., “Generic flatness for strongly Noetherian algebras”, J. Algebra, 221:2 (1999), 579–610 | DOI | MR | Zbl

[4] Backelin J., “On the rates of growth of homologies of Veronese subrings”, Lecture Notes Math., 1183, 1986, 79–100 | MR | Zbl

[5] Blum S., “Initially Koszul algebras”, Beitr. Algebra Geom., 41:2 (2000), 455–467 | MR | Zbl

[6] Burbaki N\@., Algèbre, Ch. 10. Algèbre homologique, Masson, Paris, 1980

[7] Conca A., “Universally Koszul algebras”, Math. Ann., 317:2 (2000), 329–346 | DOI | MR | Zbl

[8] Conca A., “Universally Koszul algebras defined by monomials”, Rend. Sem. Mat. Univ. Padova, 107 (2002), 1–5 | MR

[9] Conca A., de Negri E., Rossi M. E., “On the rate of points in projective spaces”, Israel J. Math., 124 (2001), 253–265 | DOI | MR | Zbl

[10] Conca A., Rossi M. E., Valla G., “Gröbner flags and Gorenstein algebras”, Compositio Math., 129 (2001), 95–121 | DOI | MR | Zbl

[11] Conca A., Trung N. V., Valla G., “Koszul property for points in projective spaces”, Math. Scand., 89:2 (2001), 201–216 | MR | Zbl

[12] Faith K., Algebra: Rings, Modules, and Categories, V. I, Grundlehren der Mathematischen Wissenschaften, 190, Springer, Berlin, 1981, Corrected reprint | MR | Zbl

[13] Lorenz M., “On Gelfand–Kirillov dimension and related topics”, J. Algebra, 118:2 (1988), 423–437 | DOI | MR | Zbl

[14] Piontkovski D., Linear equations over noncommutative graded rings, , 2004 ; J. Algebra (to appear) arXiv: /math.RA/0404419 | MR

[15] Polishchuk A\@., Koszul configurations of points in projective spaces, arXiv: /math.AG/0412441 | MR

[16] Polishchuk A., Positselski L., Quadratic algebras, Preprint (1994–2000) | MR

[17] Small L. W., Stafford J. T., Warfield R. B., Jr., “Affine algebras of Gelfand–Kirillov dimension one are PI”, Math. Proc. Cambridge Philos. Soc., 97:3 (1985), 407–414 | DOI | MR | Zbl