Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 23-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Standard bases of ideals of the polynomial ring $R[X]=R[x_1,\dots,x_k]$ over a commutative Artinian chain ring $R$ that are concordant with the norm on $R$ have been investigated by D. A. Mikhailov, A. A. Nechaev, and the author. In this paper we continue this investigation. We introduce a new order on terms and a new reduction algorithm, using the coordinate decomposition of elements from $R$. We prove that any ideal has a unique reduced (in terms of this algorithm) standard basis. We solve some classical computational problems: the construction of a set of coset representatives, the finding of a set of generators of the syzygy module, the evaluation of ideal quotients and intersections, and the elimination problem. We construct an algorithm testing the cyclicity of an LRS-family $L_R(I)$, which is a generalization of known results to the multivariate case. We present new conditions determining whether a Ferre diagram $\mathcal F$ and a full system of $\mathcal F$-monic polynomials form a shift register. On the basis of these results, we construct an algorithm for lifting a reduced Gröbner basis of a monic ideal to a standard basis with the same cardinality.
@article{FPM_2004_10_3_a2,
author = {E. V. Gorbatov},
title = {Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {23--71},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/}
}
TY - JOUR AU - E. V. Gorbatov TI - Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 23 EP - 71 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/ LA - ru ID - FPM_2004_10_3_a2 ER -
%0 Journal Article %A E. V. Gorbatov %T Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences %J Fundamentalʹnaâ i prikladnaâ matematika %D 2004 %P 23-71 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/ %G ru %F FPM_2004_10_3_a2
E. V. Gorbatov. Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 23-71. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/