Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_3_a2, author = {E. V. Gorbatov}, title = {Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {23--71}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/} }
TY - JOUR AU - E. V. Gorbatov TI - Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 23 EP - 71 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/ LA - ru ID - FPM_2004_10_3_a2 ER -
%0 Journal Article %A E. V. Gorbatov %T Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences %J Fundamentalʹnaâ i prikladnaâ matematika %D 2004 %P 23-71 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/ %G ru %F FPM_2004_10_3_a2
E. V. Gorbatov. Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 23-71. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR
[2] Gorbatov E. V., “Standartnyi bazis polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 16:1 (2004), 52–78 | MR | Zbl
[3] Gorbatov E. V., Nechaev A. A., “Kriterii tsiklichnosti semeistva polilineinykh rekurrent nad QF-modulem”, Uspekhi mat. nauk, 56:4 (2001)
[4] Kash F., Moduli i koltsa, Mir, M., 1981 | MR
[5] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000
[6] Latyshev V. N., Kombinatornaya teoriya kolets, standartnye bazisy, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl
[7] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskret. mat., 3:4 (1991), 105–127 | MR
[8] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundam. i prikl. mat., 1:1 (1995), 229–254 | MR | Zbl
[9] Nechaev A. A., Mikhailov D. A., “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 13:4 (2001), 3–42 | MR | Zbl
[10] Nechaev A. A., Mikhailov D. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskret. mat., 16:1 (2004), 21–51 | MR | Zbl
[11] Feis K., Algebra: koltsa, moduli, kategorii, T. 2, Mir, M., 1979 | MR
[12] Adams W., Loustaunau P., An Introduction to Gröbner bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, 1994 | MR | Zbl
[13] Apel J., “Computational ideal theory in finitely generated extension rings”, J. Theoretical Computer Science, 244 (2000), 1–33 | DOI | MR | Zbl
[14] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symbolic Comput., 31 (2001), 565–584 | DOI | MR | Zbl
[15] Kronecker L., Vorlesungen über Zahlentheorie, Bd. 1, Teubner, Leipzig, 1901 | Zbl
[16] Krull W., “Algebraische Theorie der Ringe, II”, Math. Ann., 91 (1923), 1–46 | DOI | MR
[17] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[18] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl
[19] Lu P., A criterion for annihilating ideals of linear recurring sequences over Galois rings, AAECC-417
[20] Mora T., Seven Variations on Standard Bases, Preprint. Univ. de Genova, Dip. di Mathematica. No 45, 1986
[21] Nechaev A. A., “Linear recurring sequences over quasi-Frobenius modules”, Russian Math. Surveys, 48:3 (1993) | DOI | MR
[22] Nechaev A. A., “Polylinear recurring sequences over modules and quasi-Frobenius modules”, Proc. First Int. Tainan–Moscow Algebra Workshop, 1994, Walter de Gruyter, Berlin, New York, 1996, 283–298 | MR
[23] Norton G. H., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proceedings of the International Workshop on Coding and Cryptography, Paris, 2001, 8–12 | MR | Zbl
[24] Robbiano L., “On the theory of graded structures”, J. Symbolic Comput., 2 (1986), 139–170 | DOI | MR | Zbl