Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 23-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Standard bases of ideals of the polynomial ring $R[X]=R[x_1,\dots,x_k]$ over a commutative Artinian chain ring $R$ that are concordant with the norm on $R$ have been investigated by D. A. Mikhailov, A. A. Nechaev, and the author. In this paper we continue this investigation. We introduce a new order on terms and a new reduction algorithm, using the coordinate decomposition of elements from $R$. We prove that any ideal has a unique reduced (in terms of this algorithm) standard basis. We solve some classical computational problems: the construction of a set of coset representatives, the finding of a set of generators of the syzygy module, the evaluation of ideal quotients and intersections, and the elimination problem. We construct an algorithm testing the cyclicity of an LRS-family $L_R(I)$, which is a generalization of known results to the multivariate case. We present new conditions determining whether a Ferre diagram $\mathcal F$ and a full system of $\mathcal F$-monic polynomials form a shift register. On the basis of these results, we construct an algorithm for lifting a reduced Gröbner basis of a monic ideal to a standard basis with the same cardinality.
@article{FPM_2004_10_3_a2,
     author = {E. V. Gorbatov},
     title = {Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--71},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/}
}
TY  - JOUR
AU  - E. V. Gorbatov
TI  - Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 23
EP  - 71
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/
LA  - ru
ID  - FPM_2004_10_3_a2
ER  - 
%0 Journal Article
%A E. V. Gorbatov
%T Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 23-71
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/
%G ru
%F FPM_2004_10_3_a2
E. V. Gorbatov. Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 23-71. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a2/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[2] Gorbatov E. V., “Standartnyi bazis polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 16:1 (2004), 52–78 | MR | Zbl

[3] Gorbatov E. V., Nechaev A. A., “Kriterii tsiklichnosti semeistva polilineinykh rekurrent nad QF-modulem”, Uspekhi mat. nauk, 56:4 (2001)

[4] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[5] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[6] Latyshev V. N., Kombinatornaya teoriya kolets, standartnye bazisy, Izd-vo Mosk. un-ta, M., 1988 | MR | Zbl

[7] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskret. mat., 3:4 (1991), 105–127 | MR

[8] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundam. i prikl. mat., 1:1 (1995), 229–254 | MR | Zbl

[9] Nechaev A. A., Mikhailov D. A., “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 13:4 (2001), 3–42 | MR | Zbl

[10] Nechaev A. A., Mikhailov D. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskret. mat., 16:1 (2004), 21–51 | MR | Zbl

[11] Feis K., Algebra: koltsa, moduli, kategorii, T. 2, Mir, M., 1979 | MR

[12] Adams W., Loustaunau P., An Introduction to Gröbner bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, 1994 | MR | Zbl

[13] Apel J., “Computational ideal theory in finitely generated extension rings”, J. Theoretical Computer Science, 244 (2000), 1–33 | DOI | MR | Zbl

[14] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symbolic Comput., 31 (2001), 565–584 | DOI | MR | Zbl

[15] Kronecker L., Vorlesungen über Zahlentheorie, Bd. 1, Teubner, Leipzig, 1901 | Zbl

[16] Krull W., “Algebraische Theorie der Ringe, II”, Math. Ann., 91 (1923), 1–46 | DOI | MR

[17] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[18] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[19] Lu P., A criterion for annihilating ideals of linear recurring sequences over Galois rings, AAECC-417

[20] Mora T., Seven Variations on Standard Bases, Preprint. Univ. de Genova, Dip. di Mathematica. No 45, 1986

[21] Nechaev A. A., “Linear recurring sequences over quasi-Frobenius modules”, Russian Math. Surveys, 48:3 (1993) | DOI | MR

[22] Nechaev A. A., “Polylinear recurring sequences over modules and quasi-Frobenius modules”, Proc. First Int. Tainan–Moscow Algebra Workshop, 1994, Walter de Gruyter, Berlin, New York, 1996, 283–298 | MR

[23] Norton G. H., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proceedings of the International Workshop on Coding and Cryptography, Paris, 2001, 8–12 | MR | Zbl

[24] Robbiano L., “On the theory of graded structures”, J. Symbolic Comput., 2 (1986), 139–170 | DOI | MR | Zbl