@article{FPM_2004_10_3_a12,
author = {C. da Fonseca},
title = {An interlacing theorem for matrices whose graph is a~given tree},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {245--254},
year = {2004},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a12/}
}
C. da Fonseca. An interlacing theorem for matrices whose graph is a given tree. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 245-254. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a12/
[1] Bapat R. B., “An interlacing theorem for tridiagonal matrices”, Linear Algebra Appl., 150 (1991), 331–340 | DOI | MR | Zbl
[2] Cvetković D. M., Doob M., Sachs H., Spectra of Graphs, Academic Press, New York, 1980 | MR | Zbl
[3] Ky Fan, Pall G., “Imbedding conditions for Hermitian and normal matrices”, Canad. J. Math., 9 (1957), 298–304 | DOI | MR | Zbl
[4] Godsil G., “Spectra of trees”, Ann. Discrete Math., 20 (1984), 151–159 | MR | Zbl
[5] Godsil G., Algebraic Combinatorics, Chapman and Hall, New York, 1993 | MR | Zbl
[6] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, 1985 | MR | Zbl
[7] Johnson C. R., “The permanent-on-top conjecture: a status report”, Current Trends in Matrix Theory, eds. F. Uhlig, R. Grone, Elsevier Science, 1987, 167–174 | MR
[8] Johnson C. R., “A characteristic polynomial for matrix pairs”, Linear and Multilinear Algebra, 25 (1989), 289–290 | DOI
[9] Lovász L., Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979 | MR | Zbl
[10] Marshall A. W., Olkin I., Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1976 | MR | Zbl
[11] Rublein G., “On a conjecture of C. Johnson”, Linear and Multilinear Algebra, 25 (1989), 257–267 | DOI | MR | Zbl