Geometric regularity of direct-sum decompositions in some classes of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 231-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that modules with semilocal endomorphism rings appear in abundance in applications, that their direct-sum decompositions are described by the so-called Krull monoids, and that this implies a geometric regularity of the direct-sum decompositions of these modules. Their direct-sum decompositions into indecomposables are not necessarily unique in the sense of the Krull–Schmidt theorem. The application of the theory of Krull monoids to the study of direct-sum decompositions of modules has been developed during the last five years. After a quick survey of the results obtained in this direction, we concentrate in particular on the abundance of examples. At present, these examples are scattered in the literature, and we try to collect them in a systematic way.
@article{FPM_2004_10_3_a11,
     author = {A. Facchini},
     title = {Geometric regularity of direct-sum decompositions in some classes of modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--244},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/}
}
TY  - JOUR
AU  - A. Facchini
TI  - Geometric regularity of direct-sum decompositions in some classes of modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 231
EP  - 244
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/
LA  - ru
ID  - FPM_2004_10_3_a11
ER  - 
%0 Journal Article
%A A. Facchini
%T Geometric regularity of direct-sum decompositions in some classes of modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 231-244
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/
%G ru
%F FPM_2004_10_3_a11
A. Facchini. Geometric regularity of direct-sum decompositions in some classes of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 231-244. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/

[1] Bergman G. M., “Coproducts and some universal ring constructions”, Trans. Amer. Math. Soc., 200 (1974), 33–88 | DOI | MR | Zbl

[2] Bergman G. M., Dicks W., “Universal derivations and universal ring constructions”, Pacific J. Math., 79 (1978), 293–337 | MR

[3] Calugareanu G., “Abelian groups with semi-local endomorphism ring”, Comm. Algebra, 30:9 (2002), 4105–4111 | DOI | MR | Zbl

[4] Camps R., Dicks W., “On semi-local rings”, Israel J. Math., 81 (1993), 203–211 | DOI | MR | Zbl

[5] Chouinard L. G., II, “Krull semigroups and divisor class groups”, Canad. J. Math., 33 (1981), 1459–1468 | DOI | MR | Zbl

[6] Facchini A., “Krull–Schmidt fails for serial modules”, Trans. Amer. Math. Soc., 348 (1996), 4561–4575 | DOI | MR | Zbl

[7] Facchini A., Module Theory. Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Math., 167, Birkhäuser, 1998 | MR | Zbl

[8] Facchini A., “Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids”, J. Algebra, 256 (2002), 280–307 | DOI | MR | Zbl

[9] Facchini A., Halter-Koch F., “Projective modules and divisor homomorphisms”, J. Algebra Appl., 2:4 (2003), 435–449 | DOI | MR | Zbl

[10] Facchini A., Herbera D., “$K_0$ of a semilocal ring”, J. Algebra, 225 (2000), 47–69 | DOI | MR | Zbl

[11] Facchini A., Herbera D., “Two results on modules whose endomorphism ring is semilocal”, Algebras Represent. Theory, 2004 (to appear) | MR

[12] Facchini A., Herbera D., “Local morphisms and modules with a semilocal endomorphism ring”, 2004 (to appear)

[13] Facchini A., Wiegand R., “Direct-sum decompositions of modules with semilocal endomorphism ring”, J. Algebra, 274 (2004), 689–707 | DOI | MR | Zbl

[14] Herbera D., Shamsuddin A., “Modules with semi-local endomorphism ring”, Proc. Amer. Math. Soc., 123 (1995), 3593–3600 | DOI | MR | Zbl

[15] Lady E. L., “Summands of finite rank torsion-free Abelian groups”, J. Algebra, 32 (1974), 51–52 | DOI | MR | Zbl

[16] Prihoda P., “Weak Krull–Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension”, J. Algebra, 2004 (to appear) | MR

[17] Vasconcelos W., “On finitely generated flat modules”, Trans. Amer. Math. Soc., 138 (1969), 505–512 | DOI | MR | Zbl

[18] Warfield R. B., Jr., “Serial rings and finitely presented modules”, J. Algebra, 37 (1975), 187–222 | DOI | MR | Zbl

[19] Warfield R. B., Jr., “Cancellation of modules and groups and stable range of endomorphism rings”, Pacific J. Math., 91 (1980), 457–485 | MR | Zbl

[20] Wiegand R., “Direct-sum decompositions over local rings”, J. Algebra, 240 (2001), 83–97 | DOI | MR | Zbl