Geometric regularity of direct-sum decompositions in some classes of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 231-244
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we show that modules with semilocal endomorphism rings appear in abundance in applications, that their direct-sum decompositions are described by the so-called Krull monoids, and that this implies a geometric regularity of the direct-sum decompositions of these modules. Their direct-sum decompositions into indecomposables are not necessarily unique in the sense of the Krull–Schmidt theorem. The application of the theory of Krull monoids to the study of direct-sum decompositions of modules has been developed during the last five years. After a quick survey of the results obtained in this direction, we concentrate in particular on the abundance of examples. At present, these examples are scattered in the literature, and we try to collect them in a systematic way.
@article{FPM_2004_10_3_a11,
author = {A. Facchini},
title = {Geometric regularity of direct-sum decompositions in some classes of modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {231--244},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/}
}
TY - JOUR AU - A. Facchini TI - Geometric regularity of direct-sum decompositions in some classes of modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 231 EP - 244 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/ LA - ru ID - FPM_2004_10_3_a11 ER -
A. Facchini. Geometric regularity of direct-sum decompositions in some classes of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 231-244. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/