Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_3_a11, author = {A. Facchini}, title = {Geometric regularity of direct-sum decompositions in some classes of modules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {231--244}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/} }
TY - JOUR AU - A. Facchini TI - Geometric regularity of direct-sum decompositions in some classes of modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 231 EP - 244 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/ LA - ru ID - FPM_2004_10_3_a11 ER -
A. Facchini. Geometric regularity of direct-sum decompositions in some classes of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 231-244. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a11/
[1] Bergman G. M., “Coproducts and some universal ring constructions”, Trans. Amer. Math. Soc., 200 (1974), 33–88 | DOI | MR | Zbl
[2] Bergman G. M., Dicks W., “Universal derivations and universal ring constructions”, Pacific J. Math., 79 (1978), 293–337 | MR
[3] Calugareanu G., “Abelian groups with semi-local endomorphism ring”, Comm. Algebra, 30:9 (2002), 4105–4111 | DOI | MR | Zbl
[4] Camps R., Dicks W., “On semi-local rings”, Israel J. Math., 81 (1993), 203–211 | DOI | MR | Zbl
[5] Chouinard L. G., II, “Krull semigroups and divisor class groups”, Canad. J. Math., 33 (1981), 1459–1468 | DOI | MR | Zbl
[6] Facchini A., “Krull–Schmidt fails for serial modules”, Trans. Amer. Math. Soc., 348 (1996), 4561–4575 | DOI | MR | Zbl
[7] Facchini A., Module Theory. Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Math., 167, Birkhäuser, 1998 | MR | Zbl
[8] Facchini A., “Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids”, J. Algebra, 256 (2002), 280–307 | DOI | MR | Zbl
[9] Facchini A., Halter-Koch F., “Projective modules and divisor homomorphisms”, J. Algebra Appl., 2:4 (2003), 435–449 | DOI | MR | Zbl
[10] Facchini A., Herbera D., “$K_0$ of a semilocal ring”, J. Algebra, 225 (2000), 47–69 | DOI | MR | Zbl
[11] Facchini A., Herbera D., “Two results on modules whose endomorphism ring is semilocal”, Algebras Represent. Theory, 2004 (to appear) | MR
[12] Facchini A., Herbera D., “Local morphisms and modules with a semilocal endomorphism ring”, 2004 (to appear)
[13] Facchini A., Wiegand R., “Direct-sum decompositions of modules with semilocal endomorphism ring”, J. Algebra, 274 (2004), 689–707 | DOI | MR | Zbl
[14] Herbera D., Shamsuddin A., “Modules with semi-local endomorphism ring”, Proc. Amer. Math. Soc., 123 (1995), 3593–3600 | DOI | MR | Zbl
[15] Lady E. L., “Summands of finite rank torsion-free Abelian groups”, J. Algebra, 32 (1974), 51–52 | DOI | MR | Zbl
[16] Prihoda P., “Weak Krull–Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension”, J. Algebra, 2004 (to appear) | MR
[17] Vasconcelos W., “On finitely generated flat modules”, Trans. Amer. Math. Soc., 138 (1969), 505–512 | DOI | MR | Zbl
[18] Warfield R. B., Jr., “Serial rings and finitely presented modules”, J. Algebra, 37 (1975), 187–222 | DOI | MR | Zbl
[19] Warfield R. B., Jr., “Cancellation of modules and groups and stable range of endomorphism rings”, Pacific J. Math., 91 (1980), 457–485 | MR | Zbl
[20] Wiegand R., “Direct-sum decompositions over local rings”, J. Algebra, 240 (2001), 83–97 | DOI | MR | Zbl