Quasicrystals and their symmetries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of results on symmetries of crystals and of some results on a mathematical approach to the theory of quasicrystals and their symmetries.
@article{FPM_2004_10_3_a0,
     author = {V. A. Artamonov},
     title = {Quasicrystals and their symmetries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Quasicrystals and their symmetries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 3
EP  - 10
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a0/
LA  - ru
ID  - FPM_2004_10_3_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Quasicrystals and their symmetries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 3-10
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a0/
%G ru
%F FPM_2004_10_3_a0
V. A. Artamonov. Quasicrystals and their symmetries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a0/

[1] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov, ONTI, GTTI, M., 1934

[2] Kurosh A. G., Obschaya algebra, Lektsii 1969–1970 uchebnogo goda, Nauka, M., 1974 | MR | Zbl

[3] Le Ty Kuok Tkhang, Piunikhin S. A., Sadov V. A., “Geometriya kvazikristallov”, Uspekhi mat. nauk, 48:1 (1993), 41–102 | MR

[4] Abels H., “Properly discontinuous groups of affine transformations: a survey”, Geom. Dedicata, 87 (2001), 309–333 | DOI | MR | Zbl

[5] Abels H., Margulis G. A., Soifer G. A., “Properly discontinuous groups of affine transformations with orthogonal linear part”, C. R. Acad. Sci. Paris (I), 324 (1997), 253–258 | MR | Zbl

[6] Aragón G., Aragón J. L., Davila F., Gomez A., Rodriguez M. A., “Modern geometric calculations in crystallography”, Geometric Algebra with Applications in Science and Engineering, Chapter 18, eds. E. Bayro Corrochano and G. Sobczyk, Birkhäuser, Boston, 2001, 371–386 | MR

[7] Auslander L., “The structures of compact locally affine manifolds”, Topology, 3 (1964), 131–139 | DOI | MR | Zbl

[8] Fried D., Goldman W. D., “Three-dimensional affine crystallographic groups”, Adv. Math., 47 (1983), 1–49 | DOI | MR | Zbl

[9] Janner A., “Crystallographic symmetries of quasicrystals”, Phase Transitions, 43 (1993), 35–47 | DOI

[10] Janot C., Quasicrystals: A Primer, Clarendon Press, Oxford, 1994 | Zbl