Exotic Galileian group in field theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 167-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exotic Galileian group is realized as a symmetry group of a family of nonrelativistic field theories on the noncommutative plane. This has been obtained in a unique way consistent with the Seiberg–Witten map. The symmetry group of the free model is analyzed and a characterization of the class of the self-interacting theories has been given.
@article{FPM_2004_10_1_a7,
     author = {L. Martina},
     title = {Exotic {Galileian} group in field theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--173},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a7/}
}
TY  - JOUR
AU  - L. Martina
TI  - Exotic Galileian group in field theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 167
EP  - 173
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a7/
LA  - ru
ID  - FPM_2004_10_1_a7
ER  - 
%0 Journal Article
%A L. Martina
%T Exotic Galileian group in field theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 167-173
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a7/
%G ru
%F FPM_2004_10_1_a7
L. Martina. Exotic Galileian group in field theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 167-173. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a7/

[1] Bak D., Kim S. K., Soh K.-S., Yee J. H., “Exact wave functions in a noncommutative field theory”, Phys. Rev. Lett., 85 (2000), 3087 | DOI | MR

[2] Bak D., Kim S. K., Soh K.-S., Yee J. H., “Noncommutative Chern–Simons solitons”, Phys. Rev. D, 64 (2001), 025018 | DOI

[3] Bak D., Lee K., Park J.-H., “Chern–Simons theories on the noncommutative plane”, Phys. Rev. Lett., 87 (2001), 030402 | DOI | MR

[4] Horváthy P. A., Martina L., Stichel P. C., “Galilean noncommutative gauge theory: symmetries vortices”, Nuclear Phys. B, 673 (2003), 301–318 | DOI | MR | Zbl

[5] Horváthy P. A., Martina L., Stichel P. C., “Galilean symmetry in noncommutative field theory”, Phys. Lett. B, 564 (2003), 149 | DOI | MR | Zbl

[6] Horváthy P. A., Stichel P. C., “Moving vortices in noncommutative gauge theory”, Phys. Lett. B, 583 (2004), 353–356 | DOI | MR

[7] Jackiw R., Physics Today, 25 (1980), 23 ; Niederer U., Helv. Phys. Acta, 45 (1972), 802 ; Hagen C. R., Phys. Rev. D, 5 (1972), 377 | DOI | MR | DOI

[8] Langmann E., Szabo R. J., Phys. Lett. B, 533 (2002), 168 ; Langmann E., Nuclear Phys. B, 654 (2003), 404 ; Langmann E., Szabo R. J., Zarembo K., arXiv: /hep-th/0308082 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Lévy-Leblond J.-M., “Galilei group and Galilean invariance”, Group Theory and Applications, V. II, Academic Press, New York, 1972 ; Ballesteros A., Gadella N., del Olmo M., J. Math. Phys., 33 (1992), 3379 ; Brihaye Y., Gonera C., Giller S., Kosiński P., ; Grigore D. R., J. Math. Phys., 37 (1996), 240 ; ibid 37 (1996), 460 ; Lukierski J., Stichel P. C., Zakrzewski W. J., Ann. Physics, 260 (1997), 224 ; arXiv: /hep-th/9503046arXiv: /hep-th/0207149 | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[10] Lozano G. S., Moreno E. F., Schaposnik F. A., “Self-dual Chern–Simons solitons in non-commutative space”, J. High Energy Phys., 2 (2001), 36 | DOI | MR

[11] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 9 (1999), 32 | DOI | MR | Zbl

[12] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 203 ; arXiv: /hep-th/0109162 | DOI | MR