Methods of geometry of differential equations in analysis of integrable models of field theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 57-165
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we investigate algebraic and geometric properties of hyperbolic Toda equations $u_{xy}=\exp(Ku)$ associated with nondegenerate symmetrizable matrices $K$. A hierarchy of analogues of the potential modified Korteweg"– de Vries equation $u_t=u_{xxx}+u_x^3$ is constructed and its relationship with the hierarchy for the Korteweg– de Vries equation $T_t=T_{xxx}+TT_x$ is established. Group-theoretic structures for the dispersionless $(2+1)$-dimensional Toda equation $u_{xy}=\exp(-u_{zz})$ are obtained. Geometric properties of the multi-component nonlinear Schrödinger equation type systems $\Psi_t=\boldsymbol i\Psi_{xx}+\boldsymbol if(|\Psi|)\Psi$ (multi-soliton complexes) are described.
@article{FPM_2004_10_1_a6,
author = {A. V. Kiselev},
title = {Methods of geometry of differential equations in analysis of integrable models of field theory},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {57--165},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a6/}
}
TY - JOUR AU - A. V. Kiselev TI - Methods of geometry of differential equations in analysis of integrable models of field theory JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 57 EP - 165 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a6/ LA - ru ID - FPM_2004_10_1_a6 ER -
A. V. Kiselev. Methods of geometry of differential equations in analysis of integrable models of field theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 57-165. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a6/