On construction of symmetries from integrals of hyperbolic partial differential systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 29-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm is proposed which allows one to construct higher symmetries of arbitrary order for some special classes of hyperbolic systems possessing the integrals. The Pohlmeyer–Lund–Regge system and the open two-dimensional Toda lattices are shown to belong to the class of systems such that our algorithm is applicable.
@article{FPM_2004_10_1_a3,
     author = {D. K. Demskoi and S. Ya. Startsev},
     title = {On construction of symmetries from integrals of hyperbolic partial differential systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {29--37},
     year = {2004},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a3/}
}
TY  - JOUR
AU  - D. K. Demskoi
AU  - S. Ya. Startsev
TI  - On construction of symmetries from integrals of hyperbolic partial differential systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 29
EP  - 37
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a3/
LA  - ru
ID  - FPM_2004_10_1_a3
ER  - 
%0 Journal Article
%A D. K. Demskoi
%A S. Ya. Startsev
%T On construction of symmetries from integrals of hyperbolic partial differential systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 29-37
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a3/
%G ru
%F FPM_2004_10_1_a3
D. K. Demskoi; S. Ya. Startsev. On construction of symmetries from integrals of hyperbolic partial differential systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a3/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[2] Zhiber A. V., “O polnoi integriruemosti dvumernykh dinamicheskikh sistem”, Problemy mekhaniki i upravleniya, Ufimskii nauchnyi tsentr RAN, Ufa, 1994, 62–71

[3] Zhiber A. V., Ibragimov N. Kh., Shabat A. B., “Uravneniya tipa Liuvillya”, DAN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[4] Zhiber A. V., Sokolov V. V., “Preobrazovaniya Laplasa v klassifikatsii integriruemykh kvazilineinykh uravnenii”, Problemy mekhaniki i upravleniya, T. 2, Ufimskii nauchnyi tsentr RAN, Ufa, 1995, 51–65

[5] Zhiber A. V., Sokolov V. V., “Tochno integriruemye uravneniya liuvillevskogo tipa”, Uspekhi mat. nauk, 56:1 (2001), 63–106 | MR | Zbl

[6] Zhiber A. V., Startsev S. Ya., “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Mat. zametki, 74:6 (2003), 848–857 | MR | Zbl

[7] Startsev S. Ya., “Ob invariantakh Laplasa sistem giperbolicheskikh uravnenii”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya, T. 3, Institut matematiki s VTs UNTs RAN, Ufa, 1996, 144–154

[8] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957

[9] Shabat A. B., Yamilov R. I., Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint Bashkirskogo filiala AN SSSR, Ufa, 1981

[10] Anderson I. M., Dutchamp T., “On the existence of global variational principles”, Amer. J. Math., 102 (1980), 781–868 | DOI | MR | Zbl

[11] Darboux G., Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, V. 1–4, Gauthier-Villars, Paris, 1896 | Zbl

[12] Shabat A. B., “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200 (1995), 121–133 | DOI | MR | Zbl