Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_1_a2, author = {R. Vitolo and G. Saccomandi}, title = {Null {Lagrangians} for nematic elastomers}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--28}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/} }
R. Vitolo; G. Saccomandi. Null Lagrangians for nematic elastomers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/
[1] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A. M. Vinogradov i I. S. Krasilschik, Faktorial, M., 1997
[2] Anderson D. R., Carlson D. E., Fried E., “A continuum-mechanical theory for nematic elastomers”, J. Elasticity, 56 (1999), 35–58 | DOI | MR | Zbl
[3] Anderson I. M., Duchamp T., “On the existence of global variational principles”, Amer. J. Math., 102 (1980), 781–868 | DOI | MR | Zbl
[4] Bott R., Tu L. W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82, Springer, Berlin, 1982 | MR | Zbl
[5] Ericksen J. L., “Conservation laws for liquid crystals”, Trans. Soc. Rheol., 5 (1961), 23–34 | DOI | MR
[6] Ericksen J. L., “Nilpotent energies in liquid crystal theories”, Arch. Rational Mech. Anal., 10 (1962), 189–196 | DOI | MR | Zbl
[7] Fried E., Sellers S., “Free energy-density functions for nematic elastomers”, J. Mech. Phys. Solids, 52 (2004), 1671–1689 | DOI | MR | Zbl
[8] Grigore D. R., “Variationally trivial Lagrangians and locally variational differential equations of arbitrary order”, Differential Geom. Appl., 10 (1999), 79–105 | DOI | MR | Zbl
[9] Krupka D., “Variational sequences on finite order jet spaces”, Proceedings of the Conf. on Diff. Geom. and its Appl., World Scientific, New York, 1990, 236–254 | MR | Zbl
[10] Krupka D., Musilova J., “Trivial Lagrangians in field theory”, Differential Geom. Appl., 9 (1998), 293–505 | DOI | MR
[11] Leslie F. M., “Some constutive equations for liquid crystals”, Arch. Rational Mech. Anal., 28 (1968), 265–283 | DOI | MR | Zbl
[12] Leslie F. M., Stewart I. W., Carlsson T., Nakagawa M., “Equivalent smectic $C$ liquid crystal energies”, Contin. Mech. Thermodyn., 3 (1991), 237–250 | DOI | MR | Zbl
[13] Olver P. J., Applications of Lie Groups to Differential Equations, 2nd ed., GTM, 107, Springer, 1986 | MR | Zbl
[14] Olver P. J., Sivaloganathan J., “The structure of null Lagrangians”, Nonlinearity, 1 (1988), 389–398 | DOI | MR | Zbl
[15] Palese M., Vitolo R., Winterroth E., “Minimal order problems in the calculus of variations In preparation”, 2004 (to appear)
[16] Saunders D. J., The Geometry of Jet Bundles, Cambridge Univ. Press, 1989 | MR | Zbl
[17] Terentjev E. M., “Liquid-cristalline elastomers”, J. Phys.: Condensed Matter, 11 (1999), R239–R257 | DOI
[18] Tulczyjew W. M., “The Lagrange complex”, Bull. Soc. Math. France, 105 (1977), 419–431 | MR | Zbl
[19] Vinogradov A. M., “The $\mathcal{C}$-spectral sequence, Lagrangian formalism and conservation laws I and II”, J. Math. Anal. Appl., 1984, 100 | MR
[20] Virga E., Variational Theories for Liquid Crystals, Appl. Math. and Math. Comput., 8, Chapman Hall, 1994 | MR | Zbl
[21] Vitolo R., “On different geometric formulations of Lagrangian formalism”, Differential Geom. Appl., 10 (1999), 225–255 | DOI | MR | Zbl
[22] Vitolo R., “The finite order $\mathcal{C}$-spectral sequence”, Acta Appl. Math., 72 (2002), 133–154 | DOI | MR | Zbl
[23] Warner M., Terentjev E. M., “Nematic elastomers – a new state of matter?”, Progr. Polymer Sci., 21 (1996), 853–891 | DOI