Null Lagrangians for nematic elastomers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 17-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we compute all possible null Lagrangians (null energies) for the mechanics of a distinguished class of continua, the nematic elastomers. The computation is done in order to help to relate different physically equivalent theories of nematic elastomers. We discuss both local and global (hence topological) aspects of the problem.
@article{FPM_2004_10_1_a2,
     author = {R. Vitolo and G. Saccomandi},
     title = {Null {Lagrangians} for nematic elastomers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/}
}
TY  - JOUR
AU  - R. Vitolo
AU  - G. Saccomandi
TI  - Null Lagrangians for nematic elastomers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 17
EP  - 28
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/
LA  - ru
ID  - FPM_2004_10_1_a2
ER  - 
%0 Journal Article
%A R. Vitolo
%A G. Saccomandi
%T Null Lagrangians for nematic elastomers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 17-28
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/
%G ru
%F FPM_2004_10_1_a2
R. Vitolo; G. Saccomandi. Null Lagrangians for nematic elastomers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a2/

[1] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A. M. Vinogradov i I. S. Krasilschik, Faktorial, M., 1997

[2] Anderson D. R., Carlson D. E., Fried E., “A continuum-mechanical theory for nematic elastomers”, J. Elasticity, 56 (1999), 35–58 | DOI | MR | Zbl

[3] Anderson I. M., Duchamp T., “On the existence of global variational principles”, Amer. J. Math., 102 (1980), 781–868 | DOI | MR | Zbl

[4] Bott R., Tu L. W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82, Springer, Berlin, 1982 | MR | Zbl

[5] Ericksen J. L., “Conservation laws for liquid crystals”, Trans. Soc. Rheol., 5 (1961), 23–34 | DOI | MR

[6] Ericksen J. L., “Nilpotent energies in liquid crystal theories”, Arch. Rational Mech. Anal., 10 (1962), 189–196 | DOI | MR | Zbl

[7] Fried E., Sellers S., “Free energy-density functions for nematic elastomers”, J. Mech. Phys. Solids, 52 (2004), 1671–1689 | DOI | MR | Zbl

[8] Grigore D. R., “Variationally trivial Lagrangians and locally variational differential equations of arbitrary order”, Differential Geom. Appl., 10 (1999), 79–105 | DOI | MR | Zbl

[9] Krupka D., “Variational sequences on finite order jet spaces”, Proceedings of the Conf. on Diff. Geom. and its Appl., World Scientific, New York, 1990, 236–254 | MR | Zbl

[10] Krupka D., Musilova J., “Trivial Lagrangians in field theory”, Differential Geom. Appl., 9 (1998), 293–505 | DOI | MR

[11] Leslie F. M., “Some constutive equations for liquid crystals”, Arch. Rational Mech. Anal., 28 (1968), 265–283 | DOI | MR | Zbl

[12] Leslie F. M., Stewart I. W., Carlsson T., Nakagawa M., “Equivalent smectic $C$ liquid crystal energies”, Contin. Mech. Thermodyn., 3 (1991), 237–250 | DOI | MR | Zbl

[13] Olver P. J., Applications of Lie Groups to Differential Equations, 2nd ed., GTM, 107, Springer, 1986 | MR | Zbl

[14] Olver P. J., Sivaloganathan J., “The structure of null Lagrangians”, Nonlinearity, 1 (1988), 389–398 | DOI | MR | Zbl

[15] Palese M., Vitolo R., Winterroth E., “Minimal order problems in the calculus of variations In preparation”, 2004 (to appear)

[16] Saunders D. J., The Geometry of Jet Bundles, Cambridge Univ. Press, 1989 | MR | Zbl

[17] Terentjev E. M., “Liquid-cristalline elastomers”, J. Phys.: Condensed Matter, 11 (1999), R239–R257 | DOI

[18] Tulczyjew W. M., “The Lagrange complex”, Bull. Soc. Math. France, 105 (1977), 419–431 | MR | Zbl

[19] Vinogradov A. M., “The $\mathcal{C}$-spectral sequence, Lagrangian formalism and conservation laws I and II”, J. Math. Anal. Appl., 1984, 100 | MR

[20] Virga E., Variational Theories for Liquid Crystals, Appl. Math. and Math. Comput., 8, Chapman Hall, 1994 | MR | Zbl

[21] Vitolo R., “On different geometric formulations of Lagrangian formalism”, Differential Geom. Appl., 10 (1999), 225–255 | DOI | MR | Zbl

[22] Vitolo R., “The finite order $\mathcal{C}$-spectral sequence”, Acta Appl. Math., 72 (2002), 133–154 | DOI | MR | Zbl

[23] Warner M., Terentjev E. M., “Nematic elastomers – a new state of matter?”, Progr. Polymer Sci., 21 (1996), 853–891 | DOI