Finite-type integrable geometric structures
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 255-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider finite-type geometric structures of arbitrary order and solve the integrability problem for these structures. This problem is equivalent to the integrability problem for the corresponding $G$-structures. The latter problem is solved by constructing the structure functions for $G$-structures of order ${\geq}\,1$. These functions coincide with the well-known ones for the first-order $G$-structures, although their constructions are different. We prove that a finite-type $G$-structure is integrable if and only if the structure functions of the corresponding number of its first prolongations are equal to zero. Applications of this result to second- and third-order ordinary differential equations are noted.
@article{FPM_2004_10_1_a12,
     author = {V. A. Yumaguzhin},
     title = {Finite-type integrable geometric structures},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a12/}
}
TY  - JOUR
AU  - V. A. Yumaguzhin
TI  - Finite-type integrable geometric structures
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 255
EP  - 269
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a12/
LA  - ru
ID  - FPM_2004_10_1_a12
ER  - 
%0 Journal Article
%A V. A. Yumaguzhin
%T Finite-type integrable geometric structures
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 255-269
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a12/
%G ru
%F FPM_2004_10_1_a12
V. A. Yumaguzhin. Finite-type integrable geometric structures. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 255-269. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a12/

[1] Bernshtein I. N., Rozenfeld B. I., “Odnorodnye prostranstva beskonechnomernykh algebr Li i kharakteristicheskie klassy sloenii”, Uspekhi mat. nauk, 28:4 (1973), 103–138 | MR

[2] Vagner V. V., “Teoriya differentsialnykh ob'ektov”, v kn.: O. Veblen, Dzh. Uaitkhed, Osnovaniya differentsialnoi geometrii, IL, 1949

[3] Gusyatnikova V. N., Yumaguzhin V. A., “Tochechnye preobrazovaniya i linearizuemost obyknovennykh differentsialnykh uravnenii $2$-go poryadka”, Mat. zametki, 49:1 (1991), 146–148 | MR

[4] Yumaguzhin V. A., “O prodolzheniyakh $G$-struktur”, Differentsialnaya geometriya, Vyp. 2. Mezhvuz. nauchn. sb., Izd-vo Saratovskogo un-ta, 1975, 77–87 | MR

[5] Yumaguzhin V. A., Vyp. 3. Mezhvuz. nauchn. sb., Differentsialnaya geometriya, Izd-vo Saratovskogo un-ta, 1977

[6] Guillemin V., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70:1 (1964), 16–47 | DOI | MR | Zbl

[7] Gusyatnikova V. N., Yumaguzhin V. A., “Contact transformations and local reducibility of ODEs to the form $y'''=0$”, Acta Appl. Math., 56:3 (1999), 155–179 | DOI | MR | Zbl

[8] Kuranishi M., Lectures on Involutive Systems of Partial Differential Equations, São Paulo, 1967 | Zbl

[9] Sternberg S., Lectures on Differential Geometry, 2nd edition, AMS Chelsea Publihing, American Mathematical Society, Providence, 1982 ; Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | MR | Zbl

[10] Yumaguzhin V. A., “On the obstruction to linearizability of 2-order ordinary differential equations”, Acta Appl. Math., 2004 (to appear) | MR