On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 243-253
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize earlier results of Fokas and Liu and find all locally analytic $(1+1)$-dimensional evolution equations of order $n$ that admit an $N$-shock-type solution with $N\leq n+1$. For this, we develop a refinement of the technique from our earlier work, where we completely characterized all $(1+1)$-dimensional evolution systems $\boldsymbol{u}_t=\boldsymbol{F}(x,t,\boldsymbol{u},\partial\boldsymbol{u}/\partial x,\ldots,\partial^n\boldsymbol{u}/\partial x^n)$ that are conditionally invariant under a given generalized (Lie–Bäcklund) vector field $\boldsymbol{Q}(x,t,\boldsymbol{u},\partial\boldsymbol{u}/\partial x,\ldots,\partial^k\boldsymbol{u}/\partial x^k)\partial/\partial\boldsymbol{u}$ under the assumption that the system of ODEs $\boldsymbol{Q}=0$ is totally nondegenerate. Every such conditionally invariant evolution system admits a reduction to a system of ODEs in $t$, thus being a nonlinear counterpart to quasi-exactly solvable models in quantum mechanics.
@article{FPM_2004_10_1_a11,
author = {A. Sergyeyev},
title = {On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {243--253},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a11/}
}
TY - JOUR AU - A. Sergyeyev TI - On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 243 EP - 253 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a11/ LA - ru ID - FPM_2004_10_1_a11 ER -
A. Sergyeyev. On the classification of conditionally integrable evolution systems in $(1+1)$ dimensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 243-253. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a11/