The Thom isomorphism for nonorientable bundles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes $\tau$ and $e$ with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes $\tau$ and $e$ is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.
@article{FPM_2003_9_4_a2,
author = {E. G. Sklyarenko},
title = {The {Thom} isomorphism for nonorientable bundles},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {55--103},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/}
}
E. G. Sklyarenko. The Thom isomorphism for nonorientable bundles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103. http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/