The Thom isomorphism for nonorientable bundles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes $\tau$ and $e$ with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes $\tau$ and $e$ is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.
@article{FPM_2003_9_4_a2,
     author = {E. G. Sklyarenko},
     title = {The {Thom} isomorphism for nonorientable bundles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {55--103},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - The Thom isomorphism for nonorientable bundles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 55
EP  - 103
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/
LA  - ru
ID  - FPM_2003_9_4_a2
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T The Thom isomorphism for nonorientable bundles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 55-103
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/
%G ru
%F FPM_2003_9_4_a2
E. G. Sklyarenko. The Thom isomorphism for nonorientable bundles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103. http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/