The Thom isomorphism for nonorientable bundles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes $\tau$ and $e$ with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes $\tau$ and $e$ is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.
@article{FPM_2003_9_4_a2,
     author = {E. G. Sklyarenko},
     title = {The {Thom} isomorphism for nonorientable bundles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {55--103},
     year = {2003},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - The Thom isomorphism for nonorientable bundles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 55
EP  - 103
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/
LA  - ru
ID  - FPM_2003_9_4_a2
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T The Thom isomorphism for nonorientable bundles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 55-103
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/
%G ru
%F FPM_2003_9_4_a2
E. G. Sklyarenko. The Thom isomorphism for nonorientable bundles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 4, pp. 55-103. http://geodesic.mathdoc.fr/item/FPM_2003_9_4_a2/

[1] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1988 | MR

[2] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR

[3] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[4] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[5] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[6] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[7] Kuzminov V. I., “O proizvodnykh funktorakh funktora proektivnogo predela”, Sib. mat. zhurn., 8:2 (1967), 333–345 | MR

[8] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[9] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[10] Rudyak Yu. B., “Ob izomorfizme Toma–Dolda dlya neorientiruemykh rassloenii”, DAN SSSR, 255:6 (1980), 1323–1325 | MR | Zbl

[11] Svittser R M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR

[12] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 831–843 | Zbl

[13] Sklyarenko E. G., “Gomologii i kogomologii obschikh prostranstv”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, VINITI, M., 1989, 129–266 | MR

[14] Sklyarenko E. G., “Gomologii i kogomologii svyazi mezhdu mnozhestvami. Gomologii i kogomologii okruzheniya zamknutogo mnozhestva”, Izv. RAN. Ser. mat., 56:5 (1992), 1040–1071 | MR | Zbl

[15] Sklyarenko E. G., “O prirode gomologicheskikh umnozhenii i dvoistvennosti”, Uspekhi mat. nauk, 49:1 (1994), 141–198 | MR | Zbl

[16] Sklyarenko E. G., “Giper(ko)gomologii dlya tochnykh sleva kovariantnykh funktorov i teoriya gomologii topologicheskikh prostranstv”, Uspekhi mat. nauk, 50:3 (1995), 109–146 | MR | Zbl

[17] Sklyarenko E. G., “O kogomologiyakh s nositelyami”, Uspekhi mat. nauk, 51:1 (1996), 167–168 | MR | Zbl

[18] Sklyarenko E. G., “O gomologicheskikh umnozheniyakh”, Izv. RAN. Ser. mat., 61:1 (1997), 57–176 | MR

[19] Spaner E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[20] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[21] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Mat. sbornik, 96:3 (1975), 347–373 | MR | Zbl

[22] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[23] Bredon G. E., Sheaf theory, Second edition, Springer, 1997 ; Бредон Г. Э., Теория пучков, Наука, М., 1988 | MR | MR | Zbl

[24] Cartan H., Cohomologie des groups, suite spectral, faisceaux, Seminaire, École Normal Sup., 1950–1951

[25] Jensen C. U., Les foncteours dérivés de $\varprojlim$ et leurs applications en théorie des modules, Lect. Notes Math., 254, Springer, Berlin, New York, 1972 | MR | Zbl