Sections of a~differential spectrum and factorization-free computations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 133-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct sections of a differential spectrum using only localization and projective limits. For this purpose we introduce a special form of a multiplicative system generated by one differential polynomial and call it $D$-localization. Owing to this technique one can construct sections of a differential spectrum of a differential ring $\mathcal R$ without computation of $\operatorname{diffspec}\mathcal R$. We compare our construction with Kovacic's structure sheaf and with the results obtained by Keigher. We show how to compute sections of factor-rings of rings of differential polynomials. All computations in this paper are factorization-free.
@article{FPM_2003_9_3_a9,
     author = {A. I. Ovchinnikov},
     title = {Sections of a~differential spectrum and factorization-free computations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--144},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a9/}
}
TY  - JOUR
AU  - A. I. Ovchinnikov
TI  - Sections of a~differential spectrum and factorization-free computations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 133
EP  - 144
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a9/
LA  - ru
ID  - FPM_2003_9_3_a9
ER  - 
%0 Journal Article
%A A. I. Ovchinnikov
%T Sections of a~differential spectrum and factorization-free computations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 133-144
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a9/
%G ru
%F FPM_2003_9_3_a9
A. I. Ovchinnikov. Sections of a~differential spectrum and factorization-free computations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 133-144. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a9/

[1] Kaplanskii I., Vvedenie v differentsialnuyu algebru, Izd-vo inostrannoi literatury, M., 1959 | MR

[2] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1980

[3] Shafarevich I. R., Osnovy algebraicheskoi geometrii. T. 2. Skhemy. Kompleksnye mnogoobraziya, Nauka, M., 1988 | MR

[4] Boulier F., Lazard D., Ollivier F., Petitot M., “Representation for the radical of a finitely generated differential ideal”, ISSAC, 1995, 158–166 | Zbl

[5] Hubert E., “Factorization free decomposition algorithms in differential algebra”, J. Symb. Comp., 2 (2000), 641–662 | DOI | MR

[6] Keigher W. F., “On the structure presheaf of a differential ring”, J. Pure Appl. Algebra, 27 (1983), 163–172 | DOI | MR | Zbl

[7] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[8] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic Publisher, 1999 | MR | Zbl

[9] Kovacic J. J., “Global sections of diffspec”, J. Pure Appl. Algebra, 171 (2002), 265–288 | DOI | MR | Zbl

[10] Kovacic J. J., “Differential schemes”, Differential Algebra and Related Topics, Proceedings of the International Workshop (November 2–3, 2002), eds. Li Guo, William F. Keigher, Phyllis J. Cassidy, William Y. Sit, Rutgers University, Newark | MR

[11] Kovacic J. J., “The differential Galois theory of strongly normal extensions”, Trans. Amer. Math. Soc., 355:11 (2003), 4475–4522 | DOI | MR | Zbl

[12] Ritt J. F., Differential Algebra, American Mathematical Society Colloquium Publications, XXXIII, American Mathematical Society, New York, 1950 | MR | Zbl

[13] Sit W. Y., “The Ritt–Kolchin theory for differential polynomials”, Differential Algebra and Related Topics, Proceedings of the International Workshop (November 2–3, 2002), eds. Li Guo, William F. Keigher, Phyllis J. Cassidy, William Y. Sit, Rutgers University, Newark | MR | Zbl