Conjugation properties in incidence algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 111-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Incidence algebras can be regarded as a generalization of full matrix algebras. We present some conjugation properties for incidence functions. The list of results is as follows: a criterion for a convex-diagonal function $f$ to be conjugated to the diagonal function $fe$; conditions under which the conjugacy $f\sim Ce+\zeta_{\lessdot}$ holds (the function $Ce+\zeta_{\lessdot}$ may be thought of as an analog for a Jordan box from matrix theory); a proof of the conjugation of two functions $\zeta_$ and $\zeta_{\lessdot}$ for partially ordered sets that satisfy the conditions mentioned above; an example of a partially ordered set for which the conjugacy $\zeta_\sim \zeta_{\lessdot}$ does not hold. These results involve conjugation criteria for convex-diagonal functions of some partially ordered sets.
@article{FPM_2003_9_3_a7,
     author = {V. E. Marenich},
     title = {Conjugation properties in incidence algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/}
}
TY  - JOUR
AU  - V. E. Marenich
TI  - Conjugation properties in incidence algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 111
EP  - 123
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/
LA  - ru
ID  - FPM_2003_9_3_a7
ER  - 
%0 Journal Article
%A V. E. Marenich
%T Conjugation properties in incidence algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 111-123
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/
%G ru
%F FPM_2003_9_3_a7
V. E. Marenich. Conjugation properties in incidence algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 111-123. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/

[1] Aigner M., Kombinatornaya teoriya, Mir, M., 1987 | MR

[2] Dubile P., Rota Dzh.-K., Stenli R., “Ob osnovakh kombinatornoi teorii (VI): ideya proizvodyaschei funktsii”, Perechislitelnye zadachi kombinatornogo analiza, ed. G. P. Gavrilov, Mir, M., 1979 | MR

[3] Marenich V. E., “Svoistva otnosheniya sopryazheniya funktsii intsidentnosti”, Diskretnaya matematika i ee prilozheniya, materialy VII Mezhdunarodnogo seminara, ch. 3, MGU, M., 2001, 384

[4] Rybnikov K. A., Vvedenie v kombinatornyi analiz, Izd-vo Mosk. un-ta, M., 1985 | MR | Zbl

[5] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[6] Spiegel E., O'Donnel C. J., Incidence Algebras, New York, Basel, Hong Kong, 1997