Conjugation properties in incidence algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 111-123
Incidence algebras can be regarded as a generalization of full matrix algebras. We present some conjugation properties for incidence functions. The list of results is as follows: a criterion for a convex-diagonal function $f$ to be conjugated to the diagonal function $fe$; conditions under which the conjugacy $f\sim Ce+\zeta_{\lessdot}$ holds (the function $Ce+\zeta_{\lessdot}$ may be thought of as an analog for a Jordan box from matrix theory); a proof of the conjugation of two functions $\zeta_$ and $\zeta_{\lessdot}$ for partially ordered sets that satisfy the conditions mentioned above; an example of a partially ordered set for which the conjugacy $\zeta_\sim \zeta_{\lessdot}$ does not hold. These results involve conjugation criteria for convex-diagonal functions of some partially ordered sets.
@article{FPM_2003_9_3_a7,
author = {V. E. Marenich},
title = {Conjugation properties in incidence algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {111--123},
year = {2003},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/}
}
V. E. Marenich. Conjugation properties in incidence algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 111-123. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a7/
[1] Aigner M., Kombinatornaya teoriya, Mir, M., 1987 | MR
[2] Dubile P., Rota Dzh.-K., Stenli R., “Ob osnovakh kombinatornoi teorii (VI): ideya proizvodyaschei funktsii”, Perechislitelnye zadachi kombinatornogo analiza, ed. G. P. Gavrilov, Mir, M., 1979 | MR
[3] Marenich V. E., “Svoistva otnosheniya sopryazheniya funktsii intsidentnosti”, Diskretnaya matematika i ee prilozheniya, materialy VII Mezhdunarodnogo seminara, ch. 3, MGU, M., 2001, 384
[4] Rybnikov K. A., Vvedenie v kombinatornyi analiz, Izd-vo Mosk. un-ta, M., 1985 | MR | Zbl
[5] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR
[6] Spiegel E., O'Donnel C. J., Incidence Algebras, New York, Basel, Hong Kong, 1997