Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_3_a5, author = {A. I. Zobnin}, title = {On standard bases in rings of differential polynomials}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {89--102}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/} }
A. I. Zobnin. On standard bases in rings of differential polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 89-102. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/
[1] Pankratev E. V., “Standartnye bazisy v differentsialnoi algebre”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2003, no. 3, 48–56 | MR
[2] Boulier F., Lazard D., Ollivier F., Petitot M., “Representation for the radical of a finitely generated differential ideal”, Proceedings of 1995 International Symposium on Symbolic and Algebraic Computation, ACM Press, 1995, 158–166 | Zbl
[3] Carrà Ferro G., “Gröbner bases and differential algebra”, Lecture Notes in Computer Science, 356, 1989, 141–150 | Zbl
[4] Carrà Ferro G., “Differential Gröbner bases in one variable and in the partial case”, Math. Comput. Modelling, 25, Pergamon Press, 1997, 1–10 | MR
[5] Gallo G., Mishra B., Ollivier F., “Some constructions in rings of differential polynomials”, Lecture Notes in Computer Science, 539, 1991, 171–182 | MR | Zbl
[6] Hubert E., “Factorization-free decomposition algorithms in differential algebra”, J. Symb. Comp., 29 (2000), 641–662 | DOI | MR | Zbl
[7] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl
[8] Levi H., “On the structure of differential polynomials and on their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl
[9] Mead D. G., “A necessary and sufficient condition for membership in $[uv]$”, Proc. Amer. Math. Soc., 17 (1966), 470–473 | DOI | MR | Zbl
[10] Mead D. G., Newton M. E., “Syzygies in $[y^p z]$”, Proc. Amer. Math. Soc., 43:2 (1974), 301–305 | DOI | MR | Zbl
[11] O'Keefe K. B., “A property of the differential ideal $[y^p]$”, Trans. Amer. Math. Soc., 94 (1960), 483–497 | DOI | MR
[12] Ollivier F., Le problème de l'identifiabilité structurelle globale, Doctoral Dissertation, Paris, 1990
[13] Ollivier F., “Standard bases of differential ideals”, Lecture Notes in Computer Science, 508, 1990, 304–321 | MR
[14] Ovchinnikov A., Zobnin A., “Classification and applications of monomial orderings and the properties of differential orderings”, Proceedings of the Fifth International Workshop on Computer Algebra in Scientific Computing (CASC-2002), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Universität München, Garching, Germany, 2002, 237–252
[15] Pankratiev E. V., “Some approaches to construction of standard bases in commutative and differential algebra”, Proceedings of the Fifth International Workshop on Computer Algebra in Scientific Computing (CASC-2002), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Universität München, Garching, Germany, 2002, 265–268
[16] Pankratiev E. V., “Some approaches to construction of the differential Gröbner bases”, Calculemus 2002. 10th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning., Work in Progress Papers (Marseille, France, July 3–5, 2002), Univ. Saarlandes, 2002, 50–55
[17] Ritt J. F., Differential Algebra, American Mathematical Society Colloquium Publications, XXXIII, American Mathematical Society, New York, 1950 | MR | Zbl
[18] Rust C., Reid G. J., “Rankings of partial derivatives”, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, 1997, 9–16 | MR | Zbl
[19] Weispfenning V., “Differential term-orders”, Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, ACM Press, Kiev, 1993, 245–253 | Zbl
[20] Zobnin A., “Essential properties of admissible orderings and rankings”, Contributions to general algebra, 14, Heyn, Klagenfurt, 2004, 205–221 ; Available at, http://shade.msu.ru/d̃ifalg/Articles/Our/Zobnin/ess_properties.ps | MR | Zbl