On standard bases in rings of differential polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Ollivier's standard bases (also known as differential Gröbner bases) in an ordinary ring of differential polynomials in one indeterminate. We establish a link between these bases and Levi's reduction process. We prove that the ideal $[x^p]$ has a finite standard basis (w.r.t. the so-called $\beta$-orderings) that contains only one element. Various properties of admissible orderings on differential monomials are studied. We bring up the following problem: whether there is a finitely generated differential ideal that does not admit a finite standard basis w.r.t. any ordering.
@article{FPM_2003_9_3_a5,
     author = {A. I. Zobnin},
     title = {On standard bases in rings of differential polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/}
}
TY  - JOUR
AU  - A. I. Zobnin
TI  - On standard bases in rings of differential polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 89
EP  - 102
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/
LA  - ru
ID  - FPM_2003_9_3_a5
ER  - 
%0 Journal Article
%A A. I. Zobnin
%T On standard bases in rings of differential polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 89-102
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/
%G ru
%F FPM_2003_9_3_a5
A. I. Zobnin. On standard bases in rings of differential polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 89-102. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/

[1] Pankratev E. V., “Standartnye bazisy v differentsialnoi algebre”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2003, no. 3, 48–56 | MR

[2] Boulier F., Lazard D., Ollivier F., Petitot M., “Representation for the radical of a finitely generated differential ideal”, Proceedings of 1995 International Symposium on Symbolic and Algebraic Computation, ACM Press, 1995, 158–166 | Zbl

[3] Carrà Ferro G., “Gröbner bases and differential algebra”, Lecture Notes in Computer Science, 356, 1989, 141–150 | Zbl

[4] Carrà Ferro G., “Differential Gröbner bases in one variable and in the partial case”, Math. Comput. Modelling, 25, Pergamon Press, 1997, 1–10 | MR

[5] Gallo G., Mishra B., Ollivier F., “Some constructions in rings of differential polynomials”, Lecture Notes in Computer Science, 539, 1991, 171–182 | MR | Zbl

[6] Hubert E., “Factorization-free decomposition algorithms in differential algebra”, J. Symb. Comp., 29 (2000), 641–662 | DOI | MR | Zbl

[7] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[8] Levi H., “On the structure of differential polynomials and on their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl

[9] Mead D. G., “A necessary and sufficient condition for membership in $[uv]$”, Proc. Amer. Math. Soc., 17 (1966), 470–473 | DOI | MR | Zbl

[10] Mead D. G., Newton M. E., “Syzygies in $[y^p z]$”, Proc. Amer. Math. Soc., 43:2 (1974), 301–305 | DOI | MR | Zbl

[11] O'Keefe K. B., “A property of the differential ideal $[y^p]$”, Trans. Amer. Math. Soc., 94 (1960), 483–497 | DOI | MR

[12] Ollivier F., Le problème de l'identifiabilité structurelle globale, Doctoral Dissertation, Paris, 1990

[13] Ollivier F., “Standard bases of differential ideals”, Lecture Notes in Computer Science, 508, 1990, 304–321 | MR

[14] Ovchinnikov A., Zobnin A., “Classification and applications of monomial orderings and the properties of differential orderings”, Proceedings of the Fifth International Workshop on Computer Algebra in Scientific Computing (CASC-2002), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Universität München, Garching, Germany, 2002, 237–252

[15] Pankratiev E. V., “Some approaches to construction of standard bases in commutative and differential algebra”, Proceedings of the Fifth International Workshop on Computer Algebra in Scientific Computing (CASC-2002), eds. V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov, Technische Universität München, Garching, Germany, 2002, 265–268

[16] Pankratiev E. V., “Some approaches to construction of the differential Gröbner bases”, Calculemus 2002. 10th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning., Work in Progress Papers (Marseille, France, July 3–5, 2002), Univ. Saarlandes, 2002, 50–55

[17] Ritt J. F., Differential Algebra, American Mathematical Society Colloquium Publications, XXXIII, American Mathematical Society, New York, 1950 | MR | Zbl

[18] Rust C., Reid G. J., “Rankings of partial derivatives”, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, 1997, 9–16 | MR | Zbl

[19] Weispfenning V., “Differential term-orders”, Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, ACM Press, Kiev, 1993, 245–253 | Zbl

[20] Zobnin A., “Essential properties of admissible orderings and rankings”, Contributions to general algebra, 14, Heyn, Klagenfurt, 2004, 205–221 ; Available at, http://shade.msu.ru/d̃ifalg/Articles/Our/Zobnin/ess_properties.ps | MR | Zbl