On standard bases in rings of differential polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 89-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Ollivier's standard bases (also known as differential Gröbner bases) in an ordinary ring of differential polynomials in one indeterminate. We establish a link between these bases and Levi's reduction process. We prove that the ideal $[x^p]$ has a finite standard basis (w.r.t. the so-called $\beta$-orderings) that contains only one element. Various properties of admissible orderings on differential monomials are studied. We bring up the following problem: whether there is a finitely generated differential ideal that does not admit a finite standard basis w.r.t. any ordering.
@article{FPM_2003_9_3_a5,
     author = {A. I. Zobnin},
     title = {On standard bases in rings of differential polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/}
}
TY  - JOUR
AU  - A. I. Zobnin
TI  - On standard bases in rings of differential polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 89
EP  - 102
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/
LA  - ru
ID  - FPM_2003_9_3_a5
ER  - 
%0 Journal Article
%A A. I. Zobnin
%T On standard bases in rings of differential polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 89-102
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/
%G ru
%F FPM_2003_9_3_a5
A. I. Zobnin. On standard bases in rings of differential polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 89-102. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a5/