Algebraic geometry over free metabelian Lie algebras.~II. Finite-field case
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 65-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the second in a series of three, the object of which is to construct an algebraic geometry over the free metabelian Lie algebra $F$. For the universal closure of a free metabelian Lie algebra of finite rank $r\ge2$ over a finite field $k$ we find convenient sets of axioms in two distinct languages: with constants and without them. We give a description of the structure of finitely generated algebras from the universal closure of $F_r$ in both languages mentioned and the structure of irreducible algebraic sets over $F_r $ and respective coordinate algebras. We also prove that the universal theory of free metabelian Lie algebras over a finite field is decidable in both languages.
@article{FPM_2003_9_3_a4,
     author = {E. Yu. Daniyarova and I. V. Kazatchkov and V. N. Remeslennikov},
     title = {Algebraic geometry over free metabelian {Lie} {algebras.~II.} {Finite-field} case},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a4/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - I. V. Kazatchkov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over free metabelian Lie algebras.~II. Finite-field case
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 65
EP  - 87
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a4/
LA  - ru
ID  - FPM_2003_9_3_a4
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A I. V. Kazatchkov
%A V. N. Remeslennikov
%T Algebraic geometry over free metabelian Lie algebras.~II. Finite-field case
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 65-87
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a4/
%G ru
%F FPM_2003_9_3_a4
E. Yu. Daniyarova; I. V. Kazatchkov; V. N. Remeslennikov. Algebraic geometry over free metabelian Lie algebras.~II. Finite-field case. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 65-87. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a4/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[3] Daniyarova E. Yu., Kazachkov I. V., Remeslennikov V. N., “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li. I: U-algebry i universalnye klassy”, Fundam. i prikl. mat., 9:3 (2003), 37–63 | Zbl

[4] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[5] Leng S., Algebra, Mir, M., 1968

[6] Romankov V. A., “Ob uravneniyakh v svobodnykh metabelevykh gruppakh”, Sib. mat. zhurn., 20:3 (1979), 671–673 | MR

[7] Dzh. Barvais (red.), Spravochnaya kniga po matematicheskoi logike. Ch. I. Teoriya modelei, Nauka, M., 1982 | MR

[8] Baumslag G., Myasnikov A. G., Remeslennikov V. N., “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[9] Myasnikov A. G., Remeslennikov V. N., “Algebraic geometry over groups. II: Logical Foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[10] Seidenberg A., “Constructions in algebra”, Trans. Amer. Math. Soc., 197 (1974), 273–313 | DOI | MR | Zbl