Involutive divisions for effective involutive algorithms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 237-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of involutive divisions on monomials are studied. A new method of involutive graphs is developed. The concept of complete global involutive division is introduced. A criterion of Noetherity of involutive divisions, a property of graphs of global involutive division, a test for completeness of global involutive division, a criterion of global involutive division are considered. A new series of involutive divisions is obtained by the process of completion. The properties of the divisions contained in the constructed series are studied. It is shown that the divisions from the series are better than the classical involutive divisions for involutive algorithms. The problem stated by Gao is solved: another series of involutive divisions is obtained. It is proved that all divisions of this series are continuous.
@article{FPM_2003_9_3_a16,
     author = {E. S. Shemyakova},
     title = {Involutive divisions for effective involutive algorithms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--253},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a16/}
}
TY  - JOUR
AU  - E. S. Shemyakova
TI  - Involutive divisions for effective involutive algorithms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 237
EP  - 253
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a16/
LA  - ru
ID  - FPM_2003_9_3_a16
ER  - 
%0 Journal Article
%A E. S. Shemyakova
%T Involutive divisions for effective involutive algorithms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 237-253
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a16/
%G ru
%F FPM_2003_9_3_a16
E. S. Shemyakova. Involutive divisions for effective involutive algorithms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 237-253. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a16/

[1] Zharkov A. Yu., Blinkov Yu. A., “Involyutivnye sistemy algebraicheskikh uravnenii”, Programmirovanie, 1994, 53–56 | MR | Zbl

[2] Shemyakova E. S., “Involyutivnye deleniya. Grafy”, Programmirovanie

[3] Astrelin A. V., Golubitsky O. D., Pankratiev E. V., “Gröbner bases and involutive bases”, Algebra: Proceedings of the International Algebraic Conference on the Occasion of the 90th Birthday of A. G. Kurosh (Moscow, Russia, May 25–30, 1998), Walter de Gruyter, Berlin, 2000, 49–55 | MR | Zbl

[4] Chen Yu-Fu, Gao Xiao-Shan, “Involutive directions and new involutive divisions”, Comput. Math. Appl., 41:7–8 (2001), 945–956 | DOI | MR | Zbl

[5] Gerdt V. P., Berth M., Czichowski G., Involutive divisions in “Mathematica”: implementation and some applications

[6] Gerdt V. P., Blinkov Yu. A., “Ivolutive bases of polynomial ideals”, Mathematics and Computers in Simulation, 45 (1998), 519–542 | DOI | MR

[7] Gerdt V. P., Blinkov Yu. A., “Minimal involutive bases”, Mathematics and Computers in Simulation, 45 (1998), 543–560 | DOI | MR | Zbl

[8] Janet M., “Sur les systèmes d'équations aux dérivées partielles”, J. Math. Pure Appl., 3 (1920), 65–151 | Zbl

[9] Pommaret J. F., Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978 | MR | Zbl

[10] Thomas J., Differential Systems, American Mathematical Society, New York, 1937