Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_3_a14, author = {I. Yu. Tchoupaeva}, title = {Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative {Gr\"obner} basis method}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {213--228}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/} }
TY - JOUR AU - I. Yu. Tchoupaeva TI - Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 213 EP - 228 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/ LA - ru ID - FPM_2003_9_3_a14 ER -
%0 Journal Article %A I. Yu. Tchoupaeva %T Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method %J Fundamentalʹnaâ i prikladnaâ matematika %D 2003 %P 213-228 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/ %G ru %F FPM_2003_9_3_a14
I. Yu. Tchoupaeva. Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 213-228. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/
[1] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo Mosk. un-ta, M., 1983 | MR
[2] Berezin F. A., Metod vtorichnogo kvantovaniya, NFMI, 2000
[3] Bukhberger B., Bazisy Grebnera: algoritmicheskii metod v teorii polinomialnykh idealov. Kompyuternaya algebra; simvolnye i algebraicheskie vychisleniya, Mir, M., 1986 | MR
[4] Vinberg E. B., Kurs algebry, Faktorial Press, M., 2002
[5] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000
[6] Chou S.-C., Mechanical Geometry Theorem Proving. Mathematics and Its Applications, D. Reidel, Dordrecht, 1987 | MR
[7] Chou S.-C., Gao X.-S., Zhang J.-Z., “Automated geometry theorem proving by vector calculation”, Proc. ISSAC '93, ed. Bronstein M., ACM Press, 1993, 284–291 | MR | Zbl
[8] Cox D., Little J., O'Shea D., Using Algebraic Geometry, Springer, New York, 1998 | MR
[9] Eisenbud D., Peeva I., Sturmfels B., “Noncommutative Gröbner bases for commutative ideals”, Proc. Amer. Math. Soc., 126:3 (1998), 687–691 | DOI | MR | Zbl
[10] El From Y., Sur les algèbres de type résoluble, Thèse de 3e cycle Univ. Paris 6, 1983
[11] Hartley D., Tuckey Ph., “Gröbner bases in Clifford and Grassman algebras”, J. Symbolic Comput., 20:2 (1995), 197–205 | DOI | MR | Zbl
[12] Kandry-Rody A., Weispfenning V., “Non-commutative Gröbner bases in algebras of solvable type”, J. Symbolic Comput., 9 (1990), 1–26 | DOI | MR
[13] Mora F., “Groebner bases for non-commutative polynomial rings”, Proc. AAECC-5, Springer LNCS, 229, Springer, 1986, 353–362 | MR
[14] Mora T., “Gröbner bases in noncommutative algebras”, Proc. ISSAC'88, Springer LNCS, 358, Springer, 1989, 150–161 | MR
[15] Mora T., “An introduction to commutative and noncommutative Gröbner bases”, Theoret. Comput. Sci., 134 (1994), 131–173 | DOI | MR | Zbl
[16] Stifter S., “Geometry theorem proving in vector spaces by means of Gröbner bases”, Proc. ISSAC '93, ed. Bronstein M., ACM Press, 1993, 301–310 | Zbl
[17] Tchoupaeva I. J., “Application of methods of noncommutative Gröbner bases to the proof of geometrical statements given in noncoordinate form”, Proc. International Workshop on Computer Algebra and its Application to Physics (Dubna, 2001) | Zbl
[18] Tchoupaeva I. J., “Application of the noncommutative Gröbner bases method for proving geometrical statements in coordinate free form”, Proc. Workshop on Under- and Overdetermined Systems of Algebraic or Differential Equation (Karlsruhe, 2002) | Zbl
[19] Ufnarovski V., “Introduction to noncommutative Gröbner bases theory”, Proc. London Math. Soc., 251 (1998), 259–280 | MR | Zbl
[20] Wang D., “Gröbner bases applied to geometric theorem proving and discovering”, Gröbner Bases and Applications, eds. Buchberger B. and Winkler F., Cambridge Univ. Press, 1998, 281–302 | MR