Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 213-228
Voir la notice de l'article provenant de la source Math-Net.Ru
Some geometric theorems can be stated in coordinate-free form as polynomials in Grassman algebra and can be proven by the anticommutative Gröbner basis method. In this article, we analyze some properties of both sets of hypotheses and conclusions of the theorem.
@article{FPM_2003_9_3_a14,
author = {I. Yu. Tchoupaeva},
title = {Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative {Gr\"obner} basis method},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {213--228},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/}
}
TY - JOUR AU - I. Yu. Tchoupaeva TI - Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 213 EP - 228 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/ LA - ru ID - FPM_2003_9_3_a14 ER -
%0 Journal Article %A I. Yu. Tchoupaeva %T Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method %J Fundamentalʹnaâ i prikladnaâ matematika %D 2003 %P 213-228 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/ %G ru %F FPM_2003_9_3_a14
I. Yu. Tchoupaeva. Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 213-228. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/