Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 213-228

Voir la notice de l'article provenant de la source Math-Net.Ru

Some geometric theorems can be stated in coordinate-free form as polynomials in Grassman algebra and can be proven by the anticommutative Gröbner basis method. In this article, we analyze some properties of both sets of hypotheses and conclusions of the theorem.
@article{FPM_2003_9_3_a14,
     author = {I. Yu. Tchoupaeva},
     title = {Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative {Gr\"obner} basis method},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/}
}
TY  - JOUR
AU  - I. Yu. Tchoupaeva
TI  - Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 213
EP  - 228
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/
LA  - ru
ID  - FPM_2003_9_3_a14
ER  - 
%0 Journal Article
%A I. Yu. Tchoupaeva
%T Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 213-228
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/
%G ru
%F FPM_2003_9_3_a14
I. Yu. Tchoupaeva. Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gr\"obner basis method. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 213-228. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a14/