Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_3_a13, author = {A. S. Semenov}, title = {Pair analysis of involutive divisions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {199--212}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/} }
A. S. Semenov. Pair analysis of involutive divisions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 199-212. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/
[1] Zharkov A. Yu., Blinkov Yu. A., “Involyutivnye sistemy algebraicheskikh uravnenii”, Programmirovanie, 1994
[2] Mikhalev A. V., Pankratev E. V., Kompyuternaya algebra. Vychisleniya v differentsialnykh i raznostnykh algebrakh, MGU, M., 1989
[3] Semenov A., Staticheskie svoistva involyutivnykh delenii, 2001
[4] Apel J., “The theory of involutive divisions and an application to Hilbert function computations”, J. Symbolic Comput., 25:6 (1998), 683–704 | DOI | MR | Zbl
[5] Calmet J., Hausdorf M., Seiler W. M., “A constructive introduction to involution”, Proc. Int. Symp. Applications of Computer Algebra, ISACA 2000, New Delhi, 2001, 33–50
[6] Gerdt V. P., “Involutive division technique: Some generalizations and optimizations”, J. Math. Sci., 108:6 (2002), 1034–1051 | DOI | MR
[7] Gerdt V. P., Blinkov Yu. A., “Involutive bases of polynomial ideals”, Math. Comput. Simulation., 45 (1998), 519–542 | DOI | MR
[8] Gerdt V. P., Blinkov Yu. A., “Minimal involutive bases”, Math. Comput. Simulation, 45 (1998), 543–560 | DOI | MR | Zbl
[9] Hemmecke R., Involutive bases for polynomial Ideals, PhD Thesis RISC report 03-02, Johannes Kepler Universität Linz, 2003
[10] Zharkov A. Yu., Blinkov Yu. A., Involutive Bases of Zero-Dimensional Ideals, Preprint No E5-94-318, Joint Institute for Nuclear Research, Dubna, 1994 | MR