Pair analysis of involutive divisions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 199-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this work is to describe a new approach to the study of involutive divisions using the pairwise property. The paper presents a simple and intuitive method for constructing the Janet division and reveals the deep intrinsic relationship between Janet division and $\mathrm{Lex}$-ordering. A method for constructing some analogues of the Janet division for other orders is described. An example of pairwise, continuous, and nonconstructive involutive division is given.
@article{FPM_2003_9_3_a13,
     author = {A. S. Semenov},
     title = {Pair analysis of involutive divisions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {199--212},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/}
}
TY  - JOUR
AU  - A. S. Semenov
TI  - Pair analysis of involutive divisions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 199
EP  - 212
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/
LA  - ru
ID  - FPM_2003_9_3_a13
ER  - 
%0 Journal Article
%A A. S. Semenov
%T Pair analysis of involutive divisions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 199-212
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/
%G ru
%F FPM_2003_9_3_a13
A. S. Semenov. Pair analysis of involutive divisions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 199-212. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a13/

[1] Zharkov A. Yu., Blinkov Yu. A., “Involyutivnye sistemy algebraicheskikh uravnenii”, Programmirovanie, 1994

[2] Mikhalev A. V., Pankratev E. V., Kompyuternaya algebra. Vychisleniya v differentsialnykh i raznostnykh algebrakh, MGU, M., 1989

[3] Semenov A., Staticheskie svoistva involyutivnykh delenii, 2001

[4] Apel J., “The theory of involutive divisions and an application to Hilbert function computations”, J. Symbolic Comput., 25:6 (1998), 683–704 | DOI | MR | Zbl

[5] Calmet J., Hausdorf M., Seiler W. M., “A constructive introduction to involution”, Proc. Int. Symp. Applications of Computer Algebra, ISACA 2000, New Delhi, 2001, 33–50

[6] Gerdt V. P., “Involutive division technique: Some generalizations and optimizations”, J. Math. Sci., 108:6 (2002), 1034–1051 | DOI | MR

[7] Gerdt V. P., Blinkov Yu. A., “Involutive bases of polynomial ideals”, Math. Comput. Simulation., 45 (1998), 519–542 | DOI | MR

[8] Gerdt V. P., Blinkov Yu. A., “Minimal involutive bases”, Math. Comput. Simulation, 45 (1998), 543–560 | DOI | MR | Zbl

[9] Hemmecke R., Involutive bases for polynomial Ideals, PhD Thesis RISC report 03-02, Johannes Kepler Universität Linz, 2003

[10] Zharkov A. Yu., Blinkov Yu. A., Involutive Bases of Zero-Dimensional Ideals, Preprint No E5-94-318, Joint Institute for Nuclear Research, Dubna, 1994 | MR