Invertibility of linear $f$-order preservers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that monotonic linear transformations with respect to partial orders $\stackrel{*}{}_f$, ${*}\kern1pt{}_f$, ${}\kern1pt{*}_f$, $\stackrel{\diamond}{}_f$, $\stackrel{\sigma}{}_f$ and $\stackrel{\sigma_1}{}_f$ are invertible.
@article{FPM_2003_9_3_a0,
     author = {A. A. Alieva},
     title = {Invertibility of linear $f$-order preservers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a0/}
}
TY  - JOUR
AU  - A. A. Alieva
TI  - Invertibility of linear $f$-order preservers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 3
EP  - 11
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a0/
LA  - ru
ID  - FPM_2003_9_3_a0
ER  - 
%0 Journal Article
%A A. A. Alieva
%T Invertibility of linear $f$-order preservers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 3-11
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a0/
%G ru
%F FPM_2003_9_3_a0
A. A. Alieva. Invertibility of linear $f$-order preservers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a0/