Groups of signature $(0;n;0)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 259-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be an ideal polygon with $2n-2$ vertices. Consider a pairing of the symmetrical (with respect to some fixed diagonal) sides of $M$ by mappings $S_i$, $1\le i\le n-1$, and denote by $\Gamma$ the group generated by these mappings. Each $S_i$ depends on one parameter. We prove a necessary and sufficient condition for the possibility of choosing these parameters so that our polygon $M$ would be a fundamental domain for the action of $\Gamma$.
@article{FPM_2003_9_1_a15,
     author = {P. V. Tumarkin},
     title = {Groups of signature $(0;n;0)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {259--262},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/}
}
TY  - JOUR
AU  - P. V. Tumarkin
TI  - Groups of signature $(0;n;0)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 259
EP  - 262
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/
LA  - ru
ID  - FPM_2003_9_1_a15
ER  - 
%0 Journal Article
%A P. V. Tumarkin
%T Groups of signature $(0;n;0)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 259-262
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/
%G ru
%F FPM_2003_9_1_a15
P. V. Tumarkin. Groups of signature $(0;n;0)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 259-262. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/

[1] Puankare A., Izbrannye trudy, T. 3, Nauka, M., 1971

[2] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR