Groups of signature $(0;n;0)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 259-262
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be an ideal polygon with $2n-2$ vertices. Consider a pairing of the symmetrical (with respect to some fixed diagonal) sides of $M$ by mappings $S_i$, $1\le i\le n-1$, and denote by $\Gamma$ the group generated by these mappings. Each $S_i$ depends on one parameter. We prove a necessary and sufficient condition for the possibility of choosing these parameters so that our polygon $M$ would be a fundamental domain for the action of $\Gamma$.
@article{FPM_2003_9_1_a15,
author = {P. V. Tumarkin},
title = {Groups of signature $(0;n;0)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {259--262},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/}
}
P. V. Tumarkin. Groups of signature $(0;n;0)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 259-262. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a15/