Distributive and semihereditary rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 253-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a right and left distributive ring. For a positive integer $n$, we obtain a criterion of projectivity of all $n$-generated right ideals of the ring $A$ and a criterion of the right semi-heredity of the ring $A$.
@article{FPM_2003_9_1_a14,
     author = {A. A. Tuganbaev},
     title = {Distributive and semihereditary rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {253--251},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Distributive and semihereditary rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 253
EP  - 251
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/
LA  - ru
ID  - FPM_2003_9_1_a14
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Distributive and semihereditary rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 253-251
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/
%G ru
%F FPM_2003_9_1_a14
A. A. Tuganbaev. Distributive and semihereditary rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 253-251. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/

[1] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998 | MR | Zbl

[2] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | MR | Zbl

[3] Jondrup S., “PP-rings and finitely generated flat ideals”, Proc. Amer. Math. Soc., 28:2 (1971), 431–435 | DOI | MR

[4] Stenström B., Rings of Quotients: An Introduction to Methods of Ring Theory, Springer, 1975 | MR | Zbl