Distributive and semihereditary rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 253-251
Let $A$ be a right and left distributive ring. For a positive integer $n$, we obtain a criterion of projectivity of all $n$-generated right ideals of the ring $A$ and a criterion of the right semi-heredity of the ring $A$.
@article{FPM_2003_9_1_a14,
author = {A. A. Tuganbaev},
title = {Distributive and semihereditary rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {253--251},
year = {2003},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/}
}
A. A. Tuganbaev. Distributive and semihereditary rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 253-251. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a14/
[1] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998 | MR | Zbl
[2] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | MR | Zbl
[3] Jondrup S., “PP-rings and finitely generated flat ideals”, Proc. Amer. Math. Soc., 28:2 (1971), 431–435 | DOI | MR
[4] Stenström B., Rings of Quotients: An Introduction to Methods of Ring Theory, Springer, 1975 | MR | Zbl