Fuzzy modal logics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 201-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce formal calculi which are a generalization of propositional modal logics. These calculi are called fuzzy modal logics. We introduce the concept of a fuzzy Kripke model and consider a semantics of these calculi in the class of fuzzy Kripke models. The main result of the paper is the completeness theorem of a minimal fuzzy modal logic in the class of fuzzy Kripke models.
@article{FPM_2003_9_1_a11,
     author = {A. M. Mironov},
     title = {Fuzzy modal logics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {201--230},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a11/}
}
TY  - JOUR
AU  - A. M. Mironov
TI  - Fuzzy modal logics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 201
EP  - 230
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a11/
LA  - ru
ID  - FPM_2003_9_1_a11
ER  - 
%0 Journal Article
%A A. M. Mironov
%T Fuzzy modal logics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 201-230
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a11/
%G ru
%F FPM_2003_9_1_a11
A. M. Mironov. Fuzzy modal logics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 201-230. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a11/

[1] Goldblatt R., Topoi. The categorial analysis of logic, Studies in Logic and the Foundation of Mathematics, 98, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1979 | MR | Zbl

[2] Clarke E. M., Grumberg O., Peled D., Model Checking, MIT Press, 1999

[3] Bendová K., Hájek P., Possibilistic logic as a tense logic, Proceedings of QUARDET'93, Barcelona, 1993

[4] Boutilier C., “Modal logics for qualitative possibility and beliefs”, Uncertainty in Artificial Intelligence VIII, eds. D. Dubois et al., Morgan Kaufmann, 1992, 17–24

[5] Dubois D., Lang J., Prade H., “Possibilistic logic”, Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 3: Nonmonotonic Reasoning and Uncertain Reasoning, eds. D. M. Gabbay, C. J. Hogger, J. A. Robinson, Oxford Univ. Press, 1994, 439–513 | MR

[6] Farinas del Cerro L., Herzig A., “A modal analysis of possibility theory”, Symbolic and Qualitative Approaches to Uncertainty, Lecture Notes in Comput. Sci., 548eds. . R. Kruse and P. Siegel, Springer-Verlag, 1991, 58–62

[7] Fitting M., “Many-valued modal logics”, Fund. Inform., 15 (1992), 235–254 | MR

[8] Fitting M., “Many-valued modal logics, II”, Fund. Inform., 17 (1992), 55–73 | MR | Zbl

[9] Godo L., Lopez de Mantaras R., Fuzzy logic, Encyclopaedia of Computer Science, 1993

[10] Hájek P., “On logics of approximate reasoning”, Neural Network Word., 6 (1993), 733–744 | MR

[11] Hájek P., Harmancová D., “A comparative fuzzy modal logic”, Fuzzy Logic in Artificial Intelligence, eds. E. P. Klement and W. Slany, Springer-Verlag, 1993, 27–34 | MR

[12] Hájek P., Harmancová D., Esteva F., Garcia P., Godo L., “On modal logics for qualitative possibility in a fuzzy setting”, Uncertainty in Artificial Intelligence, Proceedings of the Tenth Conference, eds. R. Lopez de Mantaras and D. Poole, Seattle, WA, 1994

[13] Hájek P., Harmancová D., Verbrugge R., “A qualitative fuzzy possibilistic logic”, International Journal of Approximate Reasoning, 12 (1995), 1–19 | DOI | MR | Zbl

[14] Ostermann P., “Many-valued modal propositional calculi”, Z. Math. Logik Grundlag. Math., 34 (1988), 343–354 | DOI | MR | Zbl