Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 149-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-invariant and pseudo-differentiable measures on a Banach space $X$ over a non-Archimedean locally compact infinite field with a non-trivial valuation are defined and constructed. Measures are considered with values in non-Archimedean fields, for example, the field $\mathbf Q_p$ of $p$-adic numbers. Theorems and criteria are formulated and proved about quasi-invariance and pseudo-differentiability of measures relative to linear and non-linear operators on $X$. Characteristic functionals of measures are studied. Moreover, the non-Archimedean analogs of the Bochner–Kolmogorov and Minlos–Sazonov theorems are investigated. Infinite products of measures are considered and the analog of the Kakutani theorem is proved. Convergence of quasi-invariant and pseudo-differentiable measures in the corresponding spaces of measures is investigated.
@article{FPM_2003_9_1_a10,
     author = {S. V. Lyudkovskii},
     title = {Quasi-invariant and pseudo-differentiable measures with values in {non-Archimedean} fields on {a~non-Archimedean} {Banach} space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--199},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 149
EP  - 199
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/
LA  - ru
ID  - FPM_2003_9_1_a10
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 149-199
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/
%G ru
%F FPM_2003_9_1_a10
S. V. Lyudkovskii. Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 149-199. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/

[1] Aref'eva I. Ya., Dragovich B., Volovich I. V., “On the $p$-adic summability of the anharmonic oscillator”, Phys. Lett. B, 200 (1988), 512–514 | DOI | MR

[2] Bikulov A. Kh., Volovich I. V., “$p$-adicheskoe brounovskoe dvizhenie”, Izv. RAN. Ser. matem., 61:3 (1997), 75–90 | MR | Zbl

[3] Bosch S., Guntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, 1984 | MR

[4] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, Uspekhi mat. nauk, 45:3 (1990), 3–83 | MR | Zbl

[5] Burbaki N., Integrirovanie. Kniga VI, Vypuski XIII, XXI, XXIX, XXXV. Glavy 1–9, Nauka, M., 1970, 1977 | MR

[6] Christensen J. P. R., Topology and Borel Structure, North-Holland Math. Studies, 10, Elsevier, Amsterdam, 1974 | MR | Zbl

[7] Constantinescu C., Spaces of Measures, Springer, Berlin, 1984 | MR | Zbl

[8] Dalecky Yu. L., Fomin S. V., Measures and Differential Equations in Infinite-Dimensional Spaces, Kluwer Acad. Publ., Dordrecht, 1991 | MR

[9] Diordievich G. S., Dragovich B., “$p$-adicheskii i adelnyi garmonicheskii ostsillyator s zavisyaschei ot vremeni chastotoi”, Teor. i matem. fiz., 124:2 (2000), 1059–1067 | MR | Zbl

[10] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[11] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[13] Gelfand I. M., Vilenkin N. Ya., Nekotorye primeneniya garmonicheskogo analiza. Obobschennye funktsii, T. 4, Fizmatgiz, M., 1961 | MR

[14] Khenneken P. L., Tortra A., Teoriya veroyatnostei i nekotorye eë prilozheniya, Nauka, M., 1974 | MR

[15] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, Nauka, M., 1979

[16] Isham C. J., Milnor J., Relativity, Groups and Topology, II, eds. B. S. De Witt, R. Stora, Elsevier, Amsterdam, 1984 | MR

[17] Jang Y., Non-Archimedean quantum mechanics, Tohoku Math. Publ., 10, 1998 | MR | Zbl

[18] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, Uspekhi matem. nauk, 45:4 (1990), 79–110 | MR | Zbl

[19] Khrennikov A. Yu., Endo M., “Neogranichennost $p$-adicheskikh gaussovykh raspredelenii”, Izv. RAN. Ser. matem., 56 (1992), 1104–1115 | MR | Zbl

[20] Lyudkovskii S. V., “Mery na gruppakh diffeomorfizmov nearkhimedovykh banakhovykh mnogoobrazii”, Uspekhi matem. nauk, 51:2 (1996), 169–170 | MR | Zbl

[21] Lyudkovskii S. V., “Nearkhimedovy poliedralnye razlozheniya ultraravnomernykh prostranstv”, Fundam. i prikl. mat., 6:2 (2000), 455–475 | MR | Zbl

[22] Lyudkovskii S. V., “Mery na gruppakh diffeomorfizmov nearkhimedovykh mnogoobrazii, predstavleniya grupp i ikh prilozheniya”, Teor. i matem. fiz., 119:3 (1999), 381–396 | MR | Zbl

[23] Lyudkovskii S. V., “Kvaziinvariantnye mery na nearkhimedovykh polugruppakh petel”, Uspekhi matem. nauk, 53:3 (1998), 203–204 | MR | Zbl

[24] Ludkovsky S. V., “Irreducible unitary representations of non-Archimedean groups of diffeomorphisms”, Southeast Asian Bulletin of Mathematics, 22 (1998), 419–436 | MR | Zbl

[25] Ludkovsky S. V., “Properties of quasi-invariant measures on topological groups and associated algebras”, Annales Mathem. B. Pascal, 6:1 (1999), 33–45 | MR | Zbl

[26] Ludkovsky S. V., “Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations”, Annales Mathem. B. Pascal, 7:2 (2000), 19–53, 55–80 | MR | Zbl

[27] Lyudkovskii S. V., “Nearkhimedovy svobodnye banakhovy prostranstva”, Fundam. i prikl. mat., 1:4 (1995), 979–987 | MR | Zbl

[28] Ludkovsky S. V., “Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations”, Rendiconti dell'Istituto di Matem. dell'Università di Trieste. Nuova Serie, 31 (1999), 101–134 | MR

[29] Ma̧drecki A., “Minlos' theorem in non-Archimedean locally convex spaces”, Comment. Math. (Warsaw), 30 (1991), 101–111 | MR

[30] Ma̧drecki A., “Some negative results on existence of Sazonov topology in $l$-adic Frechet spaces”, Arch. Math., 56 (1991), 601–610 | DOI | MR

[31] Ma̧drecki A., “On Sazonov type topology in $p$-adic Banach space”, Math. Z., 188 (1985), 225–236 | DOI | MR

[32] Monna A. P., Springer T. A., “Integration non-archimedienne”, Indag. Math., 25 (1963), 634–653 | MR

[33] Narici L., Beckenstein E., Topological Vector Spaces, Marcel Dekker Inc., New York, 1985 | MR | Zbl

[34] Rooij A. C. M., van, Non-Archimedean Functional Analysis, Marcel Dekker Inc., New York, 1978 | MR | Zbl

[35] Schikhof W. H., Ultrametric Calculus, Camb. Univ. Press, Cambridge, 1984 | MR | Zbl

[36] Schikhov W. H., On $p$-adic compact operators, Report No 8911. Dept. Math. Cath. Univ., Nijmegen, the Netherlands, 1989

[37] Schikhof W. H., “A Radon–Nikodym theorem for non-Archimedean integrals and absolutely continuous measures on groups”, Indag. Math. Ser. A, 33:1 (1971), 78–85 | MR

[38] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1974

[39] Smolyanov O. G., Fomin S. V., “Mery na lineinykh topologicheskikh prostranstvakh”, Uspekhi matem. nauk, 31:4 (1976), 3–56 | MR | Zbl

[40] Topsoe F., “Compactness and tightness in a space of measures with the topology of weak convergence”, Math. Scand., 34 (1974), 187–210 | MR | Zbl

[41] Topsoe F., “Some special results on convergent sequences of Radon measures”, Manuscripta Math., 19 (1976), 1–14 | DOI | MR | Zbl

[42] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[43] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[44] Weil A., Basic Number Theory, Springer, Berlin, 1973 | MR