Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 149-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-invariant and pseudo-differentiable measures on a Banach space $X$ over a non-Archimedean locally compact infinite field with a non-trivial valuation are defined and constructed. Measures are considered with values in non-Archimedean fields, for example, the field $\mathbf Q_p$ of $p$-adic numbers. Theorems and criteria are formulated and proved about quasi-invariance and pseudo-differentiability of measures relative to linear and non-linear operators on $X$. Characteristic functionals of measures are studied. Moreover, the non-Archimedean analogs of the Bochner–Kolmogorov and Minlos–Sazonov theorems are investigated. Infinite products of measures are considered and the analog of the Kakutani theorem is proved. Convergence of quasi-invariant and pseudo-differentiable measures in the corresponding spaces of measures is investigated.
@article{FPM_2003_9_1_a10,
     author = {S. V. Lyudkovskii},
     title = {Quasi-invariant and pseudo-differentiable measures with values in {non-Archimedean} fields on {a~non-Archimedean} {Banach} space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--199},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 149
EP  - 199
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/
LA  - ru
ID  - FPM_2003_9_1_a10
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 149-199
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/
%G ru
%F FPM_2003_9_1_a10
S. V. Lyudkovskii. Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a~non-Archimedean Banach space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 149-199. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a10/