On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown how using the $\kappa$-mixing property one can construct finite measure-preserving $\mathbb{Z}^{d}$-actions possessing different and even unusual properties. In the case of a “classical time” $\mathbb{Z}$ this approach was applied by Lemanczik and del Junco as an alternative to the so-called Rudolf's “counterexamples machine”, based on the notion of joining.
@article{FPM_2002_8_4_a15,
author = {S. V. Tikhonov},
title = {On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1179--1192},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/}
}
TY - JOUR AU - S. V. Tikhonov TI - On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 1179 EP - 1192 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/ LA - ru ID - FPM_2002_8_4_a15 ER -
S. V. Tikhonov. On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/