On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how using the $\kappa$-mixing property one can construct finite measure-preserving $\mathbb{Z}^{d}$-actions possessing different and even unusual properties. In the case of a “classical time” $\mathbb{Z}$ this approach was applied by Lemanczik and del Junco as an alternative to the so-called Rudolf's “counterexamples machine”, based on the notion of joining.
@article{FPM_2002_8_4_a15,
     author = {S. V. Tikhonov},
     title = {On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1179--1192},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1179
EP  - 1192
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/
LA  - ru
ID  - FPM_2002_8_4_a15
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1179-1192
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/
%G ru
%F FPM_2002_8_4_a15
S. V. Tikhonov. On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/

[1] Stepin A. M., “Spectral properties of generic dinamical systems”, Math. USSR Izvestiya, 29 (1987), 159–192 | DOI | MR | Zbl

[2] Furstenberg H., “Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation”, Math. Syst., 1967, 1–49, Th. 1 | DOI | MR | Zbl

[3] Del Junco A., “Disjointness of measure-preserving transformations, minimal self-joinings and cathegory”, Ergodic Theory and Dynamical systems I, Progress in Math., 10, Birkhauser, Boston, 1981, 81–89 | MR

[4] Lemanczyk M., Del Junco A., “Generic spectral properties of measure-preserving maps, and applications”, Proc. Amer. Math. Soc., 115:3 (1992), 725–736 | DOI | MR | Zbl

[5] Kornfeld, Sinai, Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[6] Rudolph D. J., “An example of a measure-preserving map with minimal self-joinings and applications”, J. Anal. Math., 35 (1979), 97–122 | DOI | MR | Zbl

[7] Sinai Ja. G., “On weak isomorphism of transformations with invariant measure”, Mat. Sbornik, 63 (1963), 23–42 | MR

[8] Ageev O. N., “O sopryazhennosti gruppovogo deistviya svoemu obratnomu”, Mat. zametki, 45:3 (1989), 3–11 | MR | Zbl

[9] Katznelson Y., Weiss B., “Commuting measure preserving transformations”, Israel J. Math., 12 (1972), 16–173 | MR

[10] Conze J. P., “Entropie d`un groupe abelien des transformations”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 26 (1973), 11–30 | MR

[11] Glasner E., King J. L., “A zero-one law for dynamical properties”, Contemporary Mathematics, 215 (1998), 231–242 | MR | Zbl