On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how using the $\kappa$-mixing property one can construct finite measure-preserving $\mathbb{Z}^{d}$-actions possessing different and even unusual properties. In the case of a “classical time” $\mathbb{Z}$ this approach was applied by Lemanczik and del Junco as an alternative to the so-called Rudolf's “counterexamples machine”, based on the notion of joining.
@article{FPM_2002_8_4_a15,
     author = {S. V. Tikhonov},
     title = {On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1179--1192},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1179
EP  - 1192
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/
LA  - ru
ID  - FPM_2002_8_4_a15
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1179-1192
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/
%G ru
%F FPM_2002_8_4_a15
S. V. Tikhonov. On relation of measure-theoretic and special properties of $\mathbb Z^d$-actions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1179-1192. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a15/