Volterra convolution equation of first kind on segment
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 955-966.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we obtain the decidability conditions for Volterra convolution equation of first kind on a segment and the solution of this equation (in quadratures).
@article{FPM_2002_8_4_a0,
     author = {A. F. Voronin},
     title = {Volterra convolution equation of first kind on segment},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {955--966},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Volterra convolution equation of first kind on segment
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 955
EP  - 966
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/
LA  - ru
ID  - FPM_2002_8_4_a0
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Volterra convolution equation of first kind on segment
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 955-966
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/
%G ru
%F FPM_2002_8_4_a0
A. F. Voronin. Volterra convolution equation of first kind on segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 955-966. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/

[1] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi mat. nauk, 13:5(83) (1958), 3–120 | MR | Zbl

[3] Titchmarsh E. K., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.-L., 1948

[4] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[5] Van der Pol B., Bremmer Kh., Operatsionnoe ischislenie na osnove dvukhstoronnego preobrazovaniya Laplasa, IL, M., 1952