Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_4_a0, author = {A. F. Voronin}, title = {Volterra convolution equation of first kind on segment}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {955--966}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/} }
A. F. Voronin. Volterra convolution equation of first kind on segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 955-966. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a0/
[1] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl
[2] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi mat. nauk, 13:5(83) (1958), 3–120 | MR | Zbl
[3] Titchmarsh E. K., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.-L., 1948
[4] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR
[5] Van der Pol B., Bremmer Kh., Operatsionnoe ischislenie na osnove dvukhstoronnego preobrazovaniya Laplasa, IL, M., 1952