Random broken isoquants limits
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 743-753
Cet article a éte moissonné depuis la source Math-Net.Ru
The probabilistic model of broken isoquants convergence to smooth ones is offered. It is shown that limit functions have some formal properties. Some classical functions of mathematical economics are also obtained in the model frames.
@article{FPM_2002_8_3_a8,
author = {A. V. Lebedev},
title = {Random broken isoquants limits},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {743--753},
year = {2002},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/}
}
A. V. Lebedev. Random broken isoquants limits. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 743-753. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/
[1] Galperin V. M., Ignatev S. M., Morgunov V. I., Mikroekonomika, T. 1, Ekonomicheskaya shkola, SPb., 1994
[2] Zamkov O. O., Tolstopyatenko A. V., Cheremnykh Yu. N., Matematicheskie metody v ekonomike, MGU im. M. V. Lomonosova Izd-vo “DIS”, M., 1997
[3] Lebedev A. V., “Veroyatnostnaya model skhodimosti lomanykh izokvant k gladkim”, Mezhdunarodnaya nauchnaya konferentsiya studentov i aspirantov “Lomonosov-99”, Tezisy dokladov, Dialog-MGU, M., 1999, 13