Random broken isoquants limits
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 743-753.

Voir la notice de l'article provenant de la source Math-Net.Ru

The probabilistic model of broken isoquants convergence to smooth ones is offered. It is shown that limit functions have some formal properties. Some classical functions of mathematical economics are also obtained in the model frames.
@article{FPM_2002_8_3_a8,
     author = {A. V. Lebedev},
     title = {Random broken isoquants limits},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {743--753},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Random broken isoquants limits
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 743
EP  - 753
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/
LA  - ru
ID  - FPM_2002_8_3_a8
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Random broken isoquants limits
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 743-753
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/
%G ru
%F FPM_2002_8_3_a8
A. V. Lebedev. Random broken isoquants limits. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 743-753. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a8/

[1] Galperin V. M., Ignatev S. M., Morgunov V. I., Mikroekonomika, T. 1, Ekonomicheskaya shkola, SPb., 1994

[2] Zamkov O. O., Tolstopyatenko A. V., Cheremnykh Yu. N., Matematicheskie metody v ekonomike, MGU im. M. V. Lomonosova Izd-vo “DIS”, M., 1997

[3] Lebedev A. V., “Veroyatnostnaya model skhodimosti lomanykh izokvant k gladkim”, Mezhdunarodnaya nauchnaya konferentsiya studentov i aspirantov “Lomonosov-99”, Tezisy dokladov, Dialog-MGU, M., 1999, 13