Exact asymptotic behaviour of the renewal measure in the ``critical'' case
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 911-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{S_{k}\}$ be a random walk drifting to $-\infty$. The exact asymptotic behaviour of $\sum\limits_{k=1}^{\infty}\mathsf P(S_{k}\geq x)$ is considered under the following moment conditions: for some $\gamma>0$, $\mathsf Ee^{\gamma S_{1}}=1$, $\mathsf E|S_{1}|e^{\gamma S_{1}}\infty$ and, in general, $\mathsf ES_{1}^{2}e^{\gamma S_{1}}=\infty$.
@article{FPM_2002_8_3_a15,
     author = {M. S. Sgibnev},
     title = {Exact asymptotic behaviour of the renewal measure in the ``critical'' case},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {911--920},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a15/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Exact asymptotic behaviour of the renewal measure in the ``critical'' case
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 911
EP  - 920
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a15/
LA  - ru
ID  - FPM_2002_8_3_a15
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Exact asymptotic behaviour of the renewal measure in the ``critical'' case
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 911-920
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a15/
%G ru
%F FPM_2002_8_3_a15
M. S. Sgibnev. Exact asymptotic behaviour of the renewal measure in the ``critical'' case. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 911-920. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a15/

[1] Borovkov A. A., Mogulskii A. A., “Vtoraya funktsiya uklonenii i asimptoticheskie zadachi vosstanovleniya i dostizheniya granitsy dlya mnogomernykh bluzhdanii”, Sib. mat. zhurn., 37:4 (1996), 745–782 | MR | Zbl

[2] Sgibnev M. S., Teoremy vosstanovleniya pri nalichii kornei kharakteristicheskogo uravneniya, Preprint RAN. Sib. otdelenie, In-t matematiki im. S. L. Soboleva; No 65, Novosibirsk, 1999

[3] Chistyakov V. P., “Teorema o summakh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatnostei i ee primeneniya, 9:4 (1964), 710–718 | Zbl

[4] Chover J., Ney P., Wainger S., “Degeneracy properties of subcritical branching processes”, Ann. Probab, 1 (1973), 663–673 | DOI | MR | Zbl

[5] Chover J., Ney P., Wainger S., “Functions of probability measures”, J. Analyse Math., 26 (1973), 255–302 | DOI | MR | Zbl

[6] Rogozin B. A., Sgibnev M. S., “Banakhovy algebry mer na pryamoi s zadannoi asimptotikoi raspredelenii na beskonechnosti”, Sib. mat. zhurn., 40:3 (1999), 660–672 | MR | Zbl

[7] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Izd-vo inostr. lit., M., 1962 | MR

[8] Rogozin B. A., Sgibnev M. S., “Banakhovy algebry mer na pryamoi”, Sib. mat. zhurn., 21:2 (1980), 160–169 | MR | Zbl

[9] Embrechts P., Goldie C. M., “On convolution tails”, Stochastic Process. Appl., 13 (1982), 263–278 | DOI | MR | Zbl

[10] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967