The elements of the constructive model theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 783-828.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized predicate is defined as a function from the natural numbers $\mathbf N$ to $2^{\mathbf N}$. The values of a generalized predicate are treated as “the realizations” of sentences. The logical operations on the generalized predicates are based on the ideas of Kleene's recursive realizability. A generalized algebraic system is defined on the ground of the concept of a generalized predicate. The notions of constructive truth in an enumerated system and in an arbitrary denumerable system are defined. It is shown that the relations of logical consequence corresponding to these semantics have not the compactness property and the set of logical tautologies is $\Pi_1^1$-complete. The problems of axiomatizing the classes of algebraic systems in the languages with constructive semantics are studied.
@article{FPM_2002_8_3_a11,
     author = {V. E. Plisko},
     title = {The elements of the constructive model theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {783--828},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a11/}
}
TY  - JOUR
AU  - V. E. Plisko
TI  - The elements of the constructive model theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 783
EP  - 828
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a11/
LA  - ru
ID  - FPM_2002_8_3_a11
ER  - 
%0 Journal Article
%A V. E. Plisko
%T The elements of the constructive model theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 783-828
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a11/
%G ru
%F FPM_2002_8_3_a11
V. E. Plisko. The elements of the constructive model theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 783-828. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a11/

[1] Voronkov A. A., “Teoriya modelei, osnovannaya na konstruktivnom ponimanii istinnosti”, Teoriya modelei i ee primeneniya, Trudy In-ta matematiki SO AN SSSR, 8, 1988, 25–42 | MR

[2] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[3] Kipnis M. M., “O realizatsiyakh predikatnykh formul”, Zapiski nauchnykh seminarov LOMI AN SSSR, 20, 1971, 40–48 | MR | Zbl

[4] Kleene S. C., “On the interpretation of intuitionistic number theory”, J. Symbol. Log., 10:4 (1945), 109–124 | DOI | MR | Zbl

[5] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957

[6] Kreisel G., “Interpretation of analysis by means of constructive functionals of finite type”, Constructivity in Mathematics, North-Holland, Amsterdam, 1959, 101–128 | MR

[7] Plisko V. E., “O realizuemykh predikatnykh formulakh”, DAN, 212:3 (1973), 553–556 | MR | Zbl

[8] Plisko V. E., “Rekursivnaya realizuemost i konstruktivnaya logika predikatov”, DAN SSSR, 214:3 (1974), 520–523 | MR | Zbl

[9] Plisko V. E., “Nekotorye varianty ponyatiya realizuemosti dlya predikatnykh formul”, DAN SSSR, 226:1 (1976), 61–64 | MR | Zbl

[10] Plisko V. E., “Nearifmetichnost klassa realizuemykh predikatnykh formul”, Izvestiya AN SSSR. Ser. matem., 41:3 (1977), 483–502 | MR | Zbl

[11] Plisko V. E., “Absolyutnaya realizuemost predikatnykh formul”, Izvestiya AN SSSR. Ser. matem., 47:2 (1983), 315–334 | MR

[12] Plisko V. E., “O yazykakh s konstruktivnymi logicheskimi svyazkami”, DAN, 296:1 (1987), 35–38 | MR

[13] Plisko V. E., “O sootnoshenii nekotorykh ponyatii konstruktivnoi teorii modelei”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1991, no. 4, 38–41 | MR

[14] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR