Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_3_a1, author = {O. N. Vasilenko}, title = {On the solvability of the discrete logarithm problem in residue classes}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {647--653}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a1/} }
O. N. Vasilenko. On the solvability of the discrete logarithm problem in residue classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 3, pp. 647-653. http://geodesic.mathdoc.fr/item/FPM_2002_8_3_a1/
[1] Cohen H., A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993 | MR
[2] McCurley K., “The discrete logarithm problem”, Proc. of Symp. in Appl. Mat., 42 (1990), 49–74 | MR | Zbl
[3] Odlyzko A., “Discrete logarithms in finite fields and their cryptographic significance”, Lect. Notes in Comput. Sci., 209, 1985, 224–314 | MR | Zbl
[4] Pohlig S. C., Hellman M., “An improved algorithm for computing logarithms over $\mathrm{GF}(p)$ and its cryptographic significance”, IEEE Trans. Inf. Theory, 24 (1978), 106–110 | DOI | MR | Zbl
[5] Riesel H., “Some soluble cases of the discrete logarithm problem”, BIT, 28 (1998), 839–851 | DOI | MR
[6] Schirokauer O., Weber D., Denny T., “Discrete logarithms: the effectiveness of the index calculus method”, Lect. Notes in Comput. Sci., 1122, 1996, 337–362 | MR
[7] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1972 | MR