Fully invariant subgroups of Abelian groups and full transitivity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 407-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Abelian group $A$ is said to be fully transitive if for any elements $a,b\in A$ with $\mathbb H(a)\leqslant\mathbb H(b)$ ($\mathbb H(a)$$\mathbb H(b)$ are the height-matrices of elements $a$ and $b$) there exists an endomorphism of $A$ sending $a$ into $b$. We say that an Abelian group $A$ is $\mathbb H$-group if any fully invariant subgroup $S$ of $A$ has the form $S=\{a\in A\mid\mathbb H(a)\geqslant M\}$, where $M$ is some $\omega\times\omega$-matrix with ordinal numbers and symbol $\infty$ for entries. The description of fully transitive groups and $\mathbb H$-groups in various classes of Abelian groups is obtained. The results of this paper show that every $\mathbb H$-group is a fully transitive group, but there are fully transitive torsion free groups and mixed groups, which are not $\mathbb H$-groups. The full description of fully invariant subgroups and their lattice for fully transitive groups in various classes of Abelian groups is obtained.
@article{FPM_2002_8_2_a4,
     author = {S. Ya. Grinshpon},
     title = {Fully invariant subgroups of {Abelian} groups and full transitivity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {407--473},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a4/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
TI  - Fully invariant subgroups of Abelian groups and full transitivity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 407
EP  - 473
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a4/
LA  - ru
ID  - FPM_2002_8_2_a4
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%T Fully invariant subgroups of Abelian groups and full transitivity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 407-473
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a4/
%G ru
%F FPM_2002_8_2_a4
S. Ya. Grinshpon. Fully invariant subgroups of Abelian groups and full transitivity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 407-473. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a4/

[1] Kaplansky I., Infinite abelian groups, Univ. of Michigan Press, Michigan, Ann. Arbor, 1954 | MR | Zbl

[2] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[3] Hill P., “On transitive and fully transitive primary groups”, Proc. Amer. Math. Soc., 22 (1969), 414–417 | DOI | MR | Zbl

[4] Corner A. L., “The independence of Kaplansky's notions of transitivity and full transitivity”, Quartery J. Math., 27 (1976), 15–20 | DOI | MR | Zbl

[5] Grinshpon S. Ya., “Svoistva vpolne tranzitivnykh abelevykh grupp”, Abelevy gruppy i moduli, 13–14 (1996), 54–61

[6] Mishina A. P., “Abelevy gruppy”, Algebra. Topologiya. Geometriya, Itogi nauki i tekhn., 10, VINITI AN SSSR, M., 1972, 5–45

[7] Mishina A. P., “Abelevy gruppy”, Algebra. Topologiya. Geometriya, Itogi nauki i tekhn., 17, VINITI AN SSSR, M., 1979, 3–63 | MR

[8] Grinshpon S. Ya., “O stroenii vpolne kharakteristicheskikh podgrupp abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 1981, 56–92 | MR | Zbl

[9] Krylov P. A., “O vpolne kharakteristicheskikh podgruppakh abelevykh grupp bez krucheniya”, Sb. aspir. rabot po matem., Tomsk. univ., Tomsk, 1973, 15–20

[10] Dobrusin Yu. B., Dep. v VINITI No 2942-77

[11] Reid J. D., “Quasi-pure-injectivity and quasi-pure-projectivity”, Lect. Notes Math., 616, 1977, 219–227 | MR | Zbl

[12] Arnold D. M., “Strongly homogeneous torsion free Abelian groups of finite rank”, Proc. Amer. Math. Soc., 56 (1976), 67–72 | DOI | MR | Zbl

[13] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. matem. zhurn., 1983, no. 2, 77–84 | Zbl

[14] Hausen J., “E-transitive torsion-free Abelian groups”, J. Algebra, 1987, no. 1, 17–27 | DOI | MR | Zbl

[15] Dugas M., Shelah S., “E-transitive groups in L”, Contemp. Math., 87 (1989), 191–199 | MR | Zbl

[16] Arnold D. M., Vinsonhaler C. I., Wickless W. J., “Quasi-pure projective and injective torsion-free Abelian groups of rank 2”, Rocky Mountain J. Math., 6 (1976), 61–70 | DOI | MR | Zbl

[17] Dobrusin Yu. B., “Kvaziservantno in'ektivnye gruppy”, Abelevy gruppy i moduli, 1979, 45–63

[18] Krylov P. A., “Nekotorye primery kvaziservantno in'ektivnykh i tranzitivnykh abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 7 (1988), 81–99 | MR | Zbl

[19] Chekhlov A. R., “Kvaziservantno in'ektivnye abelevy gruppy bez krucheniya”, Mat. zametki, 46:3 (1989), 93–99 | MR

[20] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy $\mathbf K$-pryamykh summ abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 1996, no. 13–14, 37–53

[21] Grinshpon S. Ya., “Vpolne tranzitivnye odnorodno separabelnye abelevy gruppy”, Mat. zametki, 62:3 (1997), 471–474 | MR | Zbl

[22] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy separabelnykh abelevykh grupp”, Fundam. i prikl. mat., 4:4 (1998), 1279–1305 | MR | Zbl

[23] Grinshpon S. Ya., Misyakov V. M., “O vpolne tranzitivnykh abelevykh gruppakh”, Abelevy gruppy i moduli, 1986, no. 6, 12–27

[24] Grinshpon S. Ya., Misyakov V. M., “Vpolne tranzitivnost pryamykh proizvedenii abelevykh grupp”, Abelevy gruppy i moduli, 1991, no. 10, 23–30 | MR

[25] Misyakov V. M., “O vpolne tranzitivnosti redutsirovannykh abelevykh grupp”, Abelevy gruppy i moduli, 1994, no. 11–12, 134–156 | MR | Zbl

[26] Grinshpon S. Ya., “Vpolne tranzitivnost $\mathbf K$-pryamykh summ abelevykh grupp”, Tez. dokl. Mezhdunar. konf. po teorii grupp pamyati S. N. Chernikova, Perm, 1997, 22–23

[27] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[28] Skornyakov L. A., Elementy teorii struktur, Nauka, M., 1970 | MR

[29] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[30] Le Borgne, “Groupes $\lambda$-separables”, C. R. Akad. Sci., 1975, no. 12, 415–417 | MR | Zbl

[31] Walles K. D., “$C_\lambda$-groups and $\lambda$-basic subgroups”, Pacif. J. Math., 1972, no. 3, 799–809 | MR

[32] Hill P., Megibben Ch., “On the theory and classification of Abelian $p$-groups”, Math. Z., 130 (1985), 17–38 | DOI | MR

[33] Rychkov S. V., “O pryamykh proizvedeniyakh abelevykh grupp”, Mat. sbornik, 117:2 (1982), 266–278 | MR | Zbl

[34] Prokhazka L., “Pryamye summy grupp tipa $\mathscr P^+$”, Comment. Math. Univ. Carolin, 1967, no. 1, 85–114 | Zbl

[35] Grinshpon S. Ya., “O ravenstve nulyu gruppy gomomorfizmov abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matem., 1998, no. 9, 42–46 | MR | Zbl

[36] Bekker I. Kh., “Pervye gruppy kogomologii nad mezhpryamymi summami $\mathfrak M$-separabelnykh tipa $\mathcal P^{+}$ grupp”, Abelevy gruppy i moduli, 1982, 20–33

[37] Kulikov L. Ya., “Obobschennye primarnye gruppy, I”, Trudy MMO, 1, 1952, 247–326 | MR | Zbl

[38] Megibben Ch., “Separable mixed groups”, Comment. Math. Univ. Carolin, 1980, no. 4, 755–768 | MR | Zbl

[39] Grinshpon S. Ya., “K voprosu o vpolne tranzitivnosti pryamykh proizvedenii obobschenno separabelnykh abelevykh grupp”, Abelevy gruppy i moduli, 1994, no. 11–12, 90–92 | MR | Zbl