Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_2_a3, author = {S. A. Bogatyi}, title = {Topological {Helly} theorem}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {365--405}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/} }
S. A. Bogatyi. Topological Helly theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 365-405. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/
[1] Helly E., “Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten”, Monatsh. Math. Phys., 37 (1930), 281–302 | DOI | MR | Zbl
[2] Dantser L., Gryunbaum B., Kli V., Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR
[3] Boltyanskii V. G., “Kombinatornaya geometriya”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 19, VINITI, M., 1981, 209–274 | MR
[4] Eckhoff J., “Helly, Radon, and Carathéodory type theorems”, Handbook of Convex Geometry, eds. P. M. Gruber, J. M. Wills, Elsevier Sc. Publ., 1993, 389–448 | MR
[5] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR
[6] Alexandroff P., “On the dimension of normal spaces”, Proc. Roy. Soc. London, 189 (1947), 11–39 | DOI | MR | Zbl
[7] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi mat. nauk, 23:5 (1968), 3–49 | MR
[8] Okuyama A., “On cohomological dimension for paracompact spaces. I, II”, Proc. Japan Acad., 38 (1962), 489–494, 655–659 | DOI | MR | Zbl
[9] Sklyarenko E. G., “Ob opredelenii kogomologicheskoi razmernosti”, DAN, 161:3 (1965), 538–539 | Zbl
[10] Dranishnikov A. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi mat. nauk, 43:4 (1988), 11–55 | MR
[11] Cohen H., “A cohomological definition of dimension for locally compact Hausdorff spaces”, Duke Math. Journ., 21:2 (1954), 209–224 | DOI | MR | Zbl
[12] Knaster B., Kuratowski K., Mazurkiewicz S., “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl
[13] Klee V., “On certain intersection properties of convex sets”, Canad. J. Math., 3 (1951), 272–275 | DOI | MR | Zbl
[14] Levi F. W., “Eine Ergänzung zum Hellyschen Satze”, Arch. Math., 4 (1953), 222–224 | DOI | MR | Zbl
[15] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[16] Kleinjohann N., “Remark on the Helly number for strongly convex sets on Riemannian manifolds”, Manusc. Math., 34 (1981), 27–29 | DOI | MR | Zbl
[17] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR
[18] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[19] Bajmóczy E. G., Bárány I., “On common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sc. Hungar, 34 (1979), 347–350 | DOI | MR | Zbl
[20] Sarkaria K. S., “A generalized Van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl
[21] Volovikov A. Yu., “K teoreme Van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl
[22] Nikonorov Yu. G., “Gomotopicheskii analog teoremy Khelli i suschestvovanie kvazinepodvizhnykh tochek”, Sib. mat. zhurn., 35:3 (1994), 644–646 | MR | Zbl
[23] Dugundji J., “A duality property of nerves”, Fund. Math., 59:2 (1966), 213–219 | MR | Zbl
[24] Dugundji J., “Maps into nerves of closed coverings”, Annali Scuola Norm. Super. Pisa. Sc. fis. e matem., 21:2 (1967), 121–136 | MR | Zbl
[25] Borsuk K., “On the imbedding of systems of compacta in simplicial complexes”, Fund. Math., 35 (1948), 217–234 | MR | Zbl
[26] Weil A., “Sur les théorèmes de de Rham”, Comm. Math. Helv., 26 (1952), 119–145 | DOI | MR | Zbl
[27] Ageev S. M., Bogatyi S. A., “O skleikakh nekotorykh tipov prostranstv”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 6 (1994), 19–23 | MR | Zbl
[28] Bogatyi S., “O teoreme Vietorisa v kategorii gomotopii i odnoi probleme Borsuka”, Fund. Math., 84:3 (1974), 209–228 | MR | Zbl
[29] Haddock A. G., “Some theorems related to a theorem of E. Helly”, Proc. Amer. Math. Soc., 14:4 (1963), 636–637 | DOI | MR | Zbl
[30] Aleksandrov P. S., Hopf H., Topologie, Springer, Berlin, 1935 ; reprinted Chelsea, New York, 1965 | Zbl
[31] Molnár J., “Über eine Verallgemeinerung auf Kugelfläche eines Topologischen Satzes von Helly”, Acta Math. Acad. Sci. Hungar, 7:1 (1956), 107–108 | DOI | MR | Zbl
[32] Debrunner H., “E. Helly type theorems derived from basic singular homology”, Amer. Math. Monthly, 77:4 (1970), 375–380 | DOI | MR | Zbl
[33] Soos G., “Ausdehnung des Hellyschen Satzes auf den Fall vollständiger konvexer Flächen”, Publ. Math. Debrecen, 2 (1952), 244–247 | MR
[34] Molnár J., “Über eine Vermutung von G. Hajos”, Acta Math. Acad. Sci. Hungar, 8 (1957), 311–314 | DOI | MR | Zbl
[35] Molnár J., “Über eine Übertragung des Hellyschen Satzes in sphärische Räume”, Acta Math. Acad. Sci. Hungar, 8 (1957), 315–318 | DOI | MR | Zbl
[36] Jussila O. K., “On a theorem of Floyd”, Abstracts Int. Cong. Math. Stockholm, 1962, 133
[37] Molnár J., “A kétdimenziós topológikus Helly-tételről”, Math. Lapok, 8:1–2 (1957), 108–114 | MR | Zbl
[38] Breen M., “A Helly-type theorem for simple polygons”, Geom. Dedicata, 60 (1996), 283–288 | DOI | MR | Zbl
[39] Toranzos F. A., “Intersections of compact simply connected planar sets”, Bull. Soc. Royale Sci. Liège, 66:5 (1997), 349–351 | MR | Zbl
[40] Eilenberg S., “Transformations continues en circonférence et la topologie du plan”, Fund. Math., 26:1 (1936), 61–112 | Zbl
[41] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR
[42] Borsuk K., Teoriya sheipov, Mir, M., 1976
[43] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR
[44] Moore R. L., Foundations of Point Set Theory, Amer. Math. Soc. Colloq. Publ., 13, Amer. Math. Soc., Providence, RI, 1962 | MR | Zbl
[45] Zastrow A., Plane compacta are aspherical, Preprint Ruhr-Universität Bochum, 1995
[46] Hagopian C. L., “Uniquely arcwise connected plane continua have the fixed-point property”, Trans. Amer. Math. Soc., 248:1 (1979), 85–104 | DOI | MR | Zbl
[47] Hagopian C. L., “The fixed-point property for simply connected plane continua”, Trans. Amer. Math. Soc., 348:11 (1996), 4525–4548 | DOI | MR | Zbl
[48] Bykov V. M., “O zamknutykh pokrytiyakh mnogoobrazii i zatseplenii tsiklov”, DAN SSSR, 211:5 (1973), 1027–1030 | MR | Zbl