Topological Helly theorem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 365-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an axiomatic version of topological Helly theorem, from which we derive many corollaries about common intersection (union). Instead of the space $\mathbb R^m$ we consider an arbitrary normal space $X$ with cohomological dimension not greater than $m$ and with trivial $m$-dimensional cohomological group. Instead of the convex subsets we consider closed acyclic subsets and instead of the conditions on intersections we impose (obtain) conditions on the values of arbitrary simple Boolean functions. In the extreme cases (only unions or intersections are considered) the conditions have the following form: for any $k$ sets of the given family, for $k\leq m+1$, either their common intersection has trivial cohomologies in all dimensions not greater than $m-k$, or their common union has trivial cohomologies in all dimensions from $\{k-2,\ldots,m-1\}$. Then it is proved that any subset obtained from sets of the given family with operations of union and intersection is nonempty and acyclic. For any closed covering of $m$-dimensional sphere the intersection of some $m+2$ elements is empty or for some $k\leq m+1$ there exist $k$ elements of the covering such that their intersection has non-trivial $(m+1-k)$-dimensional cohomologies. Our results are valid for arbitrary normal space of finite cohomological dimension, but are partially new even in the case of the plane. In particular, we fill the gap in the topological Helly theorem of 1930 for plane singular cells. If in the family of plane compacta the union of any 2 compacta is path-connected, and the union of any 3 compacta is simply connected, then the total intersection of all compacta of the family is non-empty. It is shown that if in the family of plane simply connected Peano continua the intersection of any 2 continua is connected and the intersection of any 3 continua is non-empty, then any compactum obtained from the compacta of the family with the operations of union and intersection is a non-empty simply connected Peano continuum. Analogously, if in the family of plane simply connected Peano continua the union of any 2 and any 3 continua is a simply connected Peano continuum, then any compactum obtained from the compacta of the family with the operations of union and intersection is a non-empty simply connected Peano continuum. Analogous statements are true for continua that do not separate the plane.
@article{FPM_2002_8_2_a3,
     author = {S. A. Bogatyi},
     title = {Topological {Helly} theorem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {365--405},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Topological Helly theorem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 365
EP  - 405
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/
LA  - ru
ID  - FPM_2002_8_2_a3
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Topological Helly theorem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 365-405
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/
%G ru
%F FPM_2002_8_2_a3
S. A. Bogatyi. Topological Helly theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 365-405. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a3/

[1] Helly E., “Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten”, Monatsh. Math. Phys., 37 (1930), 281–302 | DOI | MR | Zbl

[2] Dantser L., Gryunbaum B., Kli V., Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR

[3] Boltyanskii V. G., “Kombinatornaya geometriya”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 19, VINITI, M., 1981, 209–274 | MR

[4] Eckhoff J., “Helly, Radon, and Carathéodory type theorems”, Handbook of Convex Geometry, eds. P. M. Gruber, J. M. Wills, Elsevier Sc. Publ., 1993, 389–448 | MR

[5] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR

[6] Alexandroff P., “On the dimension of normal spaces”, Proc. Roy. Soc. London, 189 (1947), 11–39 | DOI | MR | Zbl

[7] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi mat. nauk, 23:5 (1968), 3–49 | MR

[8] Okuyama A., “On cohomological dimension for paracompact spaces. I, II”, Proc. Japan Acad., 38 (1962), 489–494, 655–659 | DOI | MR | Zbl

[9] Sklyarenko E. G., “Ob opredelenii kogomologicheskoi razmernosti”, DAN, 161:3 (1965), 538–539 | Zbl

[10] Dranishnikov A. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi mat. nauk, 43:4 (1988), 11–55 | MR

[11] Cohen H., “A cohomological definition of dimension for locally compact Hausdorff spaces”, Duke Math. Journ., 21:2 (1954), 209–224 | DOI | MR | Zbl

[12] Knaster B., Kuratowski K., Mazurkiewicz S., “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl

[13] Klee V., “On certain intersection properties of convex sets”, Canad. J. Math., 3 (1951), 272–275 | DOI | MR | Zbl

[14] Levi F. W., “Eine Ergänzung zum Hellyschen Satze”, Arch. Math., 4 (1953), 222–224 | DOI | MR | Zbl

[15] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[16] Kleinjohann N., “Remark on the Helly number for strongly convex sets on Riemannian manifolds”, Manusc. Math., 34 (1981), 27–29 | DOI | MR | Zbl

[17] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[18] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[19] Bajmóczy E. G., Bárány I., “On common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sc. Hungar, 34 (1979), 347–350 | DOI | MR | Zbl

[20] Sarkaria K. S., “A generalized Van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[21] Volovikov A. Yu., “K teoreme Van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl

[22] Nikonorov Yu. G., “Gomotopicheskii analog teoremy Khelli i suschestvovanie kvazinepodvizhnykh tochek”, Sib. mat. zhurn., 35:3 (1994), 644–646 | MR | Zbl

[23] Dugundji J., “A duality property of nerves”, Fund. Math., 59:2 (1966), 213–219 | MR | Zbl

[24] Dugundji J., “Maps into nerves of closed coverings”, Annali Scuola Norm. Super. Pisa. Sc. fis. e matem., 21:2 (1967), 121–136 | MR | Zbl

[25] Borsuk K., “On the imbedding of systems of compacta in simplicial complexes”, Fund. Math., 35 (1948), 217–234 | MR | Zbl

[26] Weil A., “Sur les théorèmes de de Rham”, Comm. Math. Helv., 26 (1952), 119–145 | DOI | MR | Zbl

[27] Ageev S. M., Bogatyi S. A., “O skleikakh nekotorykh tipov prostranstv”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 6 (1994), 19–23 | MR | Zbl

[28] Bogatyi S., “O teoreme Vietorisa v kategorii gomotopii i odnoi probleme Borsuka”, Fund. Math., 84:3 (1974), 209–228 | MR | Zbl

[29] Haddock A. G., “Some theorems related to a theorem of E. Helly”, Proc. Amer. Math. Soc., 14:4 (1963), 636–637 | DOI | MR | Zbl

[30] Aleksandrov P. S., Hopf H., Topologie, Springer, Berlin, 1935 ; reprinted Chelsea, New York, 1965 | Zbl

[31] Molnár J., “Über eine Verallgemeinerung auf Kugelfläche eines Topologischen Satzes von Helly”, Acta Math. Acad. Sci. Hungar, 7:1 (1956), 107–108 | DOI | MR | Zbl

[32] Debrunner H., “E. Helly type theorems derived from basic singular homology”, Amer. Math. Monthly, 77:4 (1970), 375–380 | DOI | MR | Zbl

[33] Soos G., “Ausdehnung des Hellyschen Satzes auf den Fall vollständiger konvexer Flächen”, Publ. Math. Debrecen, 2 (1952), 244–247 | MR

[34] Molnár J., “Über eine Vermutung von G. Hajos”, Acta Math. Acad. Sci. Hungar, 8 (1957), 311–314 | DOI | MR | Zbl

[35] Molnár J., “Über eine Übertragung des Hellyschen Satzes in sphärische Räume”, Acta Math. Acad. Sci. Hungar, 8 (1957), 315–318 | DOI | MR | Zbl

[36] Jussila O. K., “On a theorem of Floyd”, Abstracts Int. Cong. Math. Stockholm, 1962, 133

[37] Molnár J., “A kétdimenziós topológikus Helly-tételről”, Math. Lapok, 8:1–2 (1957), 108–114 | MR | Zbl

[38] Breen M., “A Helly-type theorem for simple polygons”, Geom. Dedicata, 60 (1996), 283–288 | DOI | MR | Zbl

[39] Toranzos F. A., “Intersections of compact simply connected planar sets”, Bull. Soc. Royale Sci. Liège, 66:5 (1997), 349–351 | MR | Zbl

[40] Eilenberg S., “Transformations continues en circonférence et la topologie du plan”, Fund. Math., 26:1 (1936), 61–112 | Zbl

[41] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[42] Borsuk K., Teoriya sheipov, Mir, M., 1976

[43] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[44] Moore R. L., Foundations of Point Set Theory, Amer. Math. Soc. Colloq. Publ., 13, Amer. Math. Soc., Providence, RI, 1962 | MR | Zbl

[45] Zastrow A., Plane compacta are aspherical, Preprint Ruhr-Universität Bochum, 1995

[46] Hagopian C. L., “Uniquely arcwise connected plane continua have the fixed-point property”, Trans. Amer. Math. Soc., 248:1 (1979), 85–104 | DOI | MR | Zbl

[47] Hagopian C. L., “The fixed-point property for simply connected plane continua”, Trans. Amer. Math. Soc., 348:11 (1996), 4525–4548 | DOI | MR | Zbl

[48] Bykov V. M., “O zamknutykh pokrytiyakh mnogoobrazii i zatseplenii tsiklov”, DAN SSSR, 211:5 (1973), 1027–1030 | MR | Zbl