A parallel number transformation method from a~residue system into a~mixed base system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 611-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method of number transformation from a residue system (RS) into a mixed base system (MBS), that combines the advantages of RS and MBS and has much greater, in comparison with them, parallelism in computations. The method gives an effective way to determine the number's value or a containing interval, which provides new possibilities for more wide usage of RS, in particular, in computer applications.
@article{FPM_2002_8_2_a13,
     author = {O. D. Zhukov},
     title = {A parallel number transformation method from a~residue system into a~mixed base system},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {611--615},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a13/}
}
TY  - JOUR
AU  - O. D. Zhukov
TI  - A parallel number transformation method from a~residue system into a~mixed base system
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 611
EP  - 615
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a13/
LA  - ru
ID  - FPM_2002_8_2_a13
ER  - 
%0 Journal Article
%A O. D. Zhukov
%T A parallel number transformation method from a~residue system into a~mixed base system
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 611-615
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a13/
%G ru
%F FPM_2002_8_2_a13
O. D. Zhukov. A parallel number transformation method from a~residue system into a~mixed base system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 611-615. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a13/

[1] Vinogradov I. M., Teoriya chisel, Nauka, M., 1952 | Zbl

[2] Szabo N. S., Tanaka R. I., Residue arithmetic and its applications to computer technology, Mc Craw-Hill, New York, 1967

[3] Jenkins W. K., Leon B. J., “The use of residue number systems in the design of finite impulse response digital filters”, IEEE Trans. Circuits Systems, CAS-24 (1977), 191–201 | DOI | MR | Zbl

[4] Baraniecka A., Jullien G., “On decoding techniques for residue number system realization of digital signal processing hardware”, IEEE Trans. Circuits Systems, CAS-25 (1978), 935–936 | DOI

[5] Zhukov O. D., Rishe N. D., “Effective computer algebra for some applications”, World Congress on scientific computations and modelling, 1977