The variety $\mathbf N_3\mathbf N_2$ of commutative alternative nil-algebras of index~3 over a~field of characteristic~$3$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 335-356
Voir la notice de l'article provenant de la source Math-Net.Ru
A variety is called a Specht variety if every algebra in this variety has a finite basis of identities. In 1981 S. V. Pchelintsev defined the topological rank of a Specht variety. Let $\mathbf N_k$ be the variety of commutative alternative algebras over a field of characteristic 3 with nilpotency class not greater than $k$. Let $\mathbf D$ be the variety $\mathbf N_3\mathbf N_2$ of nil-algebras of index 3, i.e. the commutative alternative algebras with identities
$$
x^3=0,\quad
[(x_1x_2)(x_3x_4)](x_5x_6)=0.
$$
In the paper we prove that the varieties $\mathbf N_k\mathbf N_l$ are Specht varieties. Moreover, a base of the space of polylinear polynomials in the free algebra $F(\mathbf D)$ is built and the topological rank $\mathrm r_{\mathrm t}(\mathbf D_n)=n+2$ of varieties
$$
\mathbf D_n=\mathbf D\cap\mathrm{Var}((xy\cdot zt)x_1\ldots x_n)
$$
is found. This implies that the topological rank of the variety $\mathbf D$ is infinite.
@article{FPM_2002_8_2_a1,
author = {A. V. Badeev},
title = {The variety $\mathbf N_3\mathbf N_2$ of commutative alternative nil-algebras of index~3 over a~field of characteristic~$3$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {335--356},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a1/}
}
TY - JOUR AU - A. V. Badeev TI - The variety $\mathbf N_3\mathbf N_2$ of commutative alternative nil-algebras of index~3 over a~field of characteristic~$3$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 335 EP - 356 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a1/ LA - ru ID - FPM_2002_8_2_a1 ER -
%0 Journal Article %A A. V. Badeev %T The variety $\mathbf N_3\mathbf N_2$ of commutative alternative nil-algebras of index~3 over a~field of characteristic~$3$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 2002 %P 335-356 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a1/ %G ru %F FPM_2002_8_2_a1
A. V. Badeev. The variety $\mathbf N_3\mathbf N_2$ of commutative alternative nil-algebras of index~3 over a~field of characteristic~$3$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 2, pp. 335-356. http://geodesic.mathdoc.fr/item/FPM_2002_8_2_a1/