Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_1_a9, author = {A. A. Makhnev}, title = {On pseudogeometrical graphs for some partial geometries}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {117--127}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/} }
A. A. Makhnev. On pseudogeometrical graphs for some partial geometries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/
[1] Brauver A. E., Lint I. Kh. van., “Silno regulyarnye grafy i chastichnye geometrii”, Kibernet. sbornik, 24 (1987), 186–229
[2] Makhnev A. A., “Pseudogeometric graphs connected with partial geometries $pG(4,R,1)$”, Mathem. Forschunginst. Oberwolfach. Tagungsbericht, 32/91, 11
[3] Makhnev A. A., “O silno regulyarnom grafe s parametrami (64,18,2,6)”, Diskret. mat., 7:3 (1995), 121–128 | MR | Zbl
[4] Wilbrink H. A., Brouwer A. E., “(57,14,1) strongly regular graph does not exist”, Proc. Kon. Nederl. Akad. Ser. A, 45:1 (1983), 117–121 | MR | Zbl
[5] Paine S., Thas J., Finite generalized quadrangles, Pitman, Boston, 1985
[6] Goethals J.-M., Seidel J. J., “The regular two graph on 276 points”, Discr. Math., 12:1 (1975), 143–158 | DOI | MR | Zbl
[7] Cameron P., Goethals J.-M., Seidel J. J., “Strongly regular graphs having strongly regular subconstituents”, J. Algebra, 55:2 (1978), 257–280 | DOI | MR | Zbl