On pseudogeometrical graphs for some partial geometries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 117-127
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a pseudogeometrical graph $\Gamma$ for $\mathrm{GQ}(4,12)$, containing a $49$-coclique $\mathcal O$, is a point graph of generalized quadrangle. Furthermore, the subgraph $\Gamma-\mathcal O$ is strongly regular with parameters $(196,39,2,9)$. It is proved that a pseudogeometrical graph for partial geometry $\mathrm{pG}_2(5,32)$ is locally a $\mathrm{GQ}(4,8)$-graph.
@article{FPM_2002_8_1_a9,
author = {A. A. Makhnev},
title = {On pseudogeometrical graphs for some partial geometries},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {117--127},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/}
}
A. A. Makhnev. On pseudogeometrical graphs for some partial geometries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/