On pseudogeometrical graphs for some partial geometries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 117-127

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a pseudogeometrical graph $\Gamma$ for $\mathrm{GQ}(4,12)$, containing a $49$-coclique $\mathcal O$, is a point graph of generalized quadrangle. Furthermore, the subgraph $\Gamma-\mathcal O$ is strongly regular with parameters $(196,39,2,9)$. It is proved that a pseudogeometrical graph for partial geometry $\mathrm{pG}_2(5,32)$ is locally a $\mathrm{GQ}(4,8)$-graph.
@article{FPM_2002_8_1_a9,
     author = {A. A. Makhnev},
     title = {On pseudogeometrical graphs for some partial geometries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On pseudogeometrical graphs for some partial geometries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 117
EP  - 127
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/
LA  - ru
ID  - FPM_2002_8_1_a9
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On pseudogeometrical graphs for some partial geometries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 117-127
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/
%G ru
%F FPM_2002_8_1_a9
A. A. Makhnev. On pseudogeometrical graphs for some partial geometries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a9/