Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_1_a7, author = {M. B. Laporta and D. I. Tolev}, title = {On the sum of squares of five prime numbers one of which belongs to an arithmetic progression}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {85--96}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/} }
TY - JOUR AU - M. B. Laporta AU - D. I. Tolev TI - On the sum of squares of five prime numbers one of which belongs to an arithmetic progression JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 85 EP - 96 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/ LA - ru ID - FPM_2002_8_1_a7 ER -
%0 Journal Article %A M. B. Laporta %A D. I. Tolev %T On the sum of squares of five prime numbers one of which belongs to an arithmetic progression %J Fundamentalʹnaâ i prikladnaâ matematika %D 2002 %P 85-96 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/ %G ru %F FPM_2002_8_1_a7
M. B. Laporta; D. I. Tolev. On the sum of squares of five prime numbers one of which belongs to an arithmetic progression. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/
[1] Fujii A., “Some additive problems of numbers”, Banach Center Publ., 17 (1985), 121–141 | MR | Zbl
[2] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th. edition, Oxford University Press, 1979 | MR | Zbl
[3] Hua L.-K., “Some results in the additive prime number theory”, Quart. J. Math. Oxford, 9 (1938), 68–80 | DOI | Zbl
[4] Hua L.-K., Additive Theory of Prime Numbers, Amer. Math. Soc., Providence, Rhode Island, 1965 | MR | Zbl
[5] Hua L.-K., An Introduction to Number Theory, Springer-Verlag, 1982 | MR
[6] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer-Verlag, 1971 | MR | Zbl
[7] Tolev D. I., “O chisle predstavlenii nechëtnogo tselogo chisla v vide summy trekh prostykh, odno iz kotorykh prinadlezhit arifmeticheskoi progressii”, Doklady Moskovskogo Matematicheskogo instituta im. V. A. Steklova, 218, 1997, 415–432 | MR | Zbl
[8] Vaughan R. C., The Hardy–Littlewood Method, 2nd ed., Cambridge University Press, 1997 | MR
[9] Vinogradov I. M., “Predstavlenie nechetnogo chisla v vide summy trekh prostykh”, DAN SSSR, 15 (1937), 169–172 | Zbl
[10] Vinogradov I. M., Selected Works, Springer-Verlag, 1985 | MR