On the sum of squares of five prime numbers one of which belongs to an arithmetic progression
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the equation $$ N=p_1^2+p_2^2+p_3^2+p_4^2+p_5^2, $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are prime numbers, $p_1+2\equiv0\pmod{k}$, $(k,2)=1$, and $N\equiv5\pmod{24}$.
@article{FPM_2002_8_1_a7,
     author = {M. B. Laporta and D. I. Tolev},
     title = {On the sum of squares of five prime numbers one of which belongs to an arithmetic progression},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/}
}
TY  - JOUR
AU  - M. B. Laporta
AU  - D. I. Tolev
TI  - On the sum of squares of five prime numbers one of which belongs to an arithmetic progression
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 85
EP  - 96
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/
LA  - ru
ID  - FPM_2002_8_1_a7
ER  - 
%0 Journal Article
%A M. B. Laporta
%A D. I. Tolev
%T On the sum of squares of five prime numbers one of which belongs to an arithmetic progression
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 85-96
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/
%G ru
%F FPM_2002_8_1_a7
M. B. Laporta; D. I. Tolev. On the sum of squares of five prime numbers one of which belongs to an arithmetic progression. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/

[1] Fujii A., “Some additive problems of numbers”, Banach Center Publ., 17 (1985), 121–141 | MR | Zbl

[2] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th. edition, Oxford University Press, 1979 | MR | Zbl

[3] Hua L.-K., “Some results in the additive prime number theory”, Quart. J. Math. Oxford, 9 (1938), 68–80 | DOI | Zbl

[4] Hua L.-K., Additive Theory of Prime Numbers, Amer. Math. Soc., Providence, Rhode Island, 1965 | MR | Zbl

[5] Hua L.-K., An Introduction to Number Theory, Springer-Verlag, 1982 | MR

[6] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer-Verlag, 1971 | MR | Zbl

[7] Tolev D. I., “O chisle predstavlenii nechëtnogo tselogo chisla v vide summy trekh prostykh, odno iz kotorykh prinadlezhit arifmeticheskoi progressii”, Doklady Moskovskogo Matematicheskogo instituta im. V. A. Steklova, 218, 1997, 415–432 | MR | Zbl

[8] Vaughan R. C., The Hardy–Littlewood Method, 2nd ed., Cambridge University Press, 1997 | MR

[9] Vinogradov I. M., “Predstavlenie nechetnogo chisla v vide summy trekh prostykh”, DAN SSSR, 15 (1937), 169–172 | Zbl

[10] Vinogradov I. M., Selected Works, Springer-Verlag, 1985 | MR