On the sum of squares of five prime numbers one of which belongs to an arithmetic progression
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 85-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the equation
$$
N=p_1^2+p_2^2+p_3^2+p_4^2+p_5^2,
$$
where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are prime numbers, $p_1+2\equiv0\pmod{k}$, $(k,2)=1$, and $N\equiv5\pmod{24}$.
@article{FPM_2002_8_1_a7,
author = {M. B. Laporta and D. I. Tolev},
title = {On the sum of squares of five prime numbers one of which belongs to an arithmetic progression},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {85--96},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/}
}
TY - JOUR AU - M. B. Laporta AU - D. I. Tolev TI - On the sum of squares of five prime numbers one of which belongs to an arithmetic progression JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 85 EP - 96 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/ LA - ru ID - FPM_2002_8_1_a7 ER -
%0 Journal Article %A M. B. Laporta %A D. I. Tolev %T On the sum of squares of five prime numbers one of which belongs to an arithmetic progression %J Fundamentalʹnaâ i prikladnaâ matematika %D 2002 %P 85-96 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/ %G ru %F FPM_2002_8_1_a7
M. B. Laporta; D. I. Tolev. On the sum of squares of five prime numbers one of which belongs to an arithmetic progression. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a7/